期刊文献+

温度梯度对定向凝固Al-Zn-Mg-Cu合金微观组织和硬度的影响

Influence of Temperature Gradient on Microstructure and Microhardness of Directionally Solidified Al-Zn-Mg-Cu Alloy
原文传递
导出
摘要 采用定向凝固方法制备不同温度梯度下的高锌Al-Zn-Mg-Cu合金,表征了该合金的一次枝晶臂间距λ_(1)、二次枝晶臂间距λ_(2)以及其维氏硬度。在此基础上,采用线性回归和曲线拟合分析方法建立了温度梯度、枝晶间距和显微硬度之间的关系,结果与枝晶生长理论模型吻合,并获得了高锌Al-Zn-Mg-Cu合金的凝固特征参数,同时分析了温度梯度对显微硬度的影响机制。研究结果对高锌Al-Zn-Mg-Cu合金制备工艺优化有指导作用。 The Al-Zn-Mg-Cu alloy with high Zn content was cast at different temperature gradients by directional solidification.The primary dendrite arm spacingλ_(1),the secondary dendrite arm spacingλ_(2),and the Vickers hardness of specimens were characterized.Based on the experiment results,the relationship among temperature gradient,dendritic arm spacing,and microhardness was determined by linear regression analysis and curve fitting analysis.The results are in agreement with the dendritic growth theoretical models,and the solidification parameters of Al-Zn-Mg-Cu alloy were obtained.In addition,the influence mechanism of temperature gradient on microhardness was analyzed.The results have a guidance function on the optimization of preparing methods of Al-Zn-Mg-Cu alloy with high zinc content.
作者 王熠璇 贾丽娜 张虎 Wang Yixuan;Jia Lina;Zhang Hu(Department of Materials Science and Engineering,Beihang University,Beijing 100191,China)
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2021年第11期3910-3916,共7页 Rare Metal Materials and Engineering
基金 National Key R&D Program of China(2016YFB0300900)。
关键词 AL-ZN-MG-CU合金 定向凝固 温度梯度 枝晶臂间距 理论模型 Al-Zn-Mg-Cu alloys directional solidification temperature gradient dendrite arm spacing theoretical model
  • 相关文献

参考文献2

二级参考文献20

  • 1张卫国,刘林,黄太文,张聚辉.定向凝固ZMLMC法温度梯度的测定及其对凝固组织的影响[J].铸造技术,2006,27(11):1165-1168. 被引量:6
  • 2吴强,司乃潮,郭毅,李达云.定向凝固Al-4.5%Cu合金枝晶组织与抽拉速率的关系[J].中国有色金属学报,2007,17(7):1101-1106. 被引量:9
  • 3HUNT J D. Solidification and casting of metals[M]. London: The Metal Society, 1979: 3-12.
  • 4KURZ W, FISHER D J. Dendrite growth at the limit of stability: Tip radius and spacing[J]. Aeta Metall, 1981, 29:11-20.
  • 5TRIVEDI R, Interdendritic spacing: Part Ⅱ. A comparison of theory and experiment[J], Metall Trans A, 1984, 15: 977-982.
  • 6HUNT J D, LU S Z. Numerical modeling of cellular/dendritic array growth: Spacing and structure predictions[J]. Metall Mater Trans A, 1996, 27:611-623.
  • 7WARREN JAMES A, LANGER J S. Prediction of dendritic spacing in a directional-solidification experiment[J]. Physics Review E, 1993, 47(4): 2702-2712.
  • 8CHEN J, SUNG P K, TEWARI S N, POIRIER D R, de GROHIII H C. Directional solidification and convection in small diameter crucibles[J]. Mate Sci Eng A, 2003, 357: 397-405.
  • 9TRIVEDI R, LILT S, MAZUMDER P, SIMSEK E. Microstructure development in the directionaUy solidified Al-4.0% Cu alloy system[J]. Sci Tech Adv Mater, 2001, 2: 309-320.
  • 10GUNDUZ M, CADIRLI E. Directional solidification of aluminum-copper alloys[J]. Mater Sci Eng A, 2002, 327:167-185.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部