期刊文献+

基于层级注意力增进网络的多尺寸遮挡人脸检测 被引量:5

Multi-size Occlusion Face Detection Based on Hierarchical Attention Enhancement Network
下载PDF
导出
摘要 在SSD(Single shot multibox detector)单阶段人脸检测模型的基础上,针对复杂局部遮挡下人脸检测精确性差的问题,提出了一种基于层级注意力增进网络的多尺寸遮挡人脸检测方法。首先,在SSD基础网络的多层初始特征图上,通过引入注意力增进机制提升人脸可见区域的响应值。然后为不同增强特征层设计不同尺寸的锚框,以提高对多尺寸遮挡人脸的分层识别效果。最后在训练时将注意力损失函数、分类损失函数和回归损失函数融合为多任务损失函数,共同优化网络参数。在WIDER FACE人脸数据集和MAFA遮挡人脸数据集上的实验表明,本文方法的检测精确性和时效性均优于目前主流遮挡人脸检测方法。 Based on the single shot multibox detector(SSD)single-stage face detection model,this paper proposes a multi-size occlusion face detection method based on a hierarchical attention enhancement network to solve the problem of poor accuracy of face detection under complex partial occlusion.Firstly,on the multi-layer original feature map of SSD basic network,the attention enhancement mechanism is introduced to improve the response value of the visible region of the face.Then,different anchor sizes are designed for different enhancement feature layers to improve the hierarchical recognition effect of multi-scale occluded face.In training,the attention loss function,the classification loss function and the regression loss function are fused into a multi-task loss function to jointly optimize the network parameters.Experiments on the WIDER FACE dataset and the MAFA occlusion face dataset show that the detection accuracy and timeliness of the method are better than those of the current mainstream occlusion face detection methods.
作者 王麟阁 蒋宝军 潘铁军 WANG Linge;JIANG Baojun;PAN Tiejun(College of Digital Technology and Engineering,Ningbo University of Finance&Economics,Ningbo 315175,China;School of Civil and Environmental Engineering,Jilin Jianzhu University,Changchun 130118,China)
出处 《数据采集与处理》 CSCD 北大核心 2022年第1期73-81,共9页 Journal of Data Acquisition and Processing
基金 2020年度宁波市“科技创新2025”重大专项暨“246”产业集群发展支撑引领计划(2020Z008) 浙江省高等教育“十三五”第二批教学改革研究项目(jg20190514)。
关键词 遮挡人脸检测 特征图 注意力增进 锚框 损失函数 occlusion face detection feature map attention enhancement anchor box loss function
  • 相关文献

参考文献2

二级参考文献6

共引文献74

同被引文献26

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部