期刊文献+

基于深度学习的多维度证据要素关联关系抽取研究 被引量:1

Research on Extraction of Multi-dimensional Evidence Elements Association Relations Based on Deep Learning
下载PDF
导出
摘要 随着社会法治化发展,法院受案数量呈爆发式增长,各证据要素之间关联较弱,影响法律审判效率。基于上述问题,提出一种基于深度学习的多维度证据要素关联关系抽取模型,设计基于BERT_BiGRU_CNN模型的证据要素关联关系抽取算法。本文以裁判文书为数据集,使用BERT训练所需字词向量,开展BERT、BERT_CNN、BERT_BiGRU以及BERT_BiGRU_CNN的对比研究,研究关系抽取技术在证据要素间的识别效果、研究表明,采用BERT_BiGRU_CNN算法在多要素证据关联关系之间的识别效果最好,且相比于其他模型,BERT_BiGRU_CNN的F1得分达到84.3%。 With the development of the rule of law in society,the number of court cases has exploded,and the correlation between the various elements of evidence is weak,which affects the efficiency of legal trials.Based on the above problems,a multi-dimensional evidence element association relationship extraction model based on deep learning is proposed,and an evidence element association relationship extraction algorithm based on the BERT_BiGRU_CNN model is designed.This paper uses judge documents as a data set and uses the word vectors required for BERT training to carry out a comparative study of BERT,BERT_CNN,BERT_BiGRU and BERT_BiGRU_CNN,to study the recognition effect of relation extraction technology in legal materials.Research shows that the BERT_BiGRU_CNN algorithm has the best recognition effect between multi-element evidence associations,and compared with other models,the F1 score of BERT_BiGRU_CNN reaches 84.3%.
作者 赵晋斌 王凯 李盼 ZHAO Jin-bin;WANG Kai;LI Pan(Unit 61646 of PLA,Beijing 100191,China;Zhongjing Baicheng Technology Co.,Ltd.,Beijing 100096,China;China Justice Big Data Institute,Beijing 100043,China)
出处 《中国电子科学研究院学报》 北大核心 2021年第12期1251-1256,1263,共7页 Journal of China Academy of Electronics and Information Technology
基金 国家重点研发计划资助项目(2018YFC0830200,2018YFC0830202)。
关键词 法律智能 关系抽取 裁判文书 信息抽取 legal intelligence relation extraction judgment information extraction
  • 相关文献

参考文献4

二级参考文献36

  • 1张景中,高小山,周咸青.基于前推法的几何信息搜索系统[J].计算机学报,1996,19(10):721-727. 被引量:34
  • 2何婷婷,徐超,李晶,赵君喆.基于种子自扩展的命名实体关系抽取方法[J].计算机工程,2006,32(21):183-184. 被引量:25
  • 3刘怀军,车万翔,刘挺.中文语义角色标注的特征工程[J].中文信息学报,2007,21(1):79-84. 被引量:39
  • 4郭四稳.基于用户自添加规则的自动推理程序[J].计算机应用与软件,2007,24(9):48-50. 被引量:5
  • 5http://trend.cnki.net/TrendSearch/trendshow.htm?searchword=%u5173%u7CFB%u62BD%u53D6,访问时间:2014-5-21.
  • 6Kushmerick,N,Weld,D,and Doorenbos,R.Wrapper induction for information extraction[C] //Proceedings of Fifteenth International Joint Conference on Artificial Intelligence.Nagoya,Japan:1997:729-737.
  • 7D Zelenko,C Aone,A Richardella.Kernel methods for relation extraction[J] .The Journal of Machine Learning Research,2003(3):1083-1106.
  • 8Philippe Thomas,Mariana Neves,Illéés Solt.Relation Extraction for Drug-Drug Interactions using Ensemble Learning[C] //Proceedings of Drug-Drug Interaction Extraction,Huelva,Spain:2011:11-18.
  • 9Mihai Surdeanu,Julie Tibshirani,Ramesh Nallapati,et al.Multi-instance Multi-label Learning for Relation Extraction[C] //Proceedings of Conference on Empirical Methods in Natural Language Processing and Natural Language Learn ing.Jeju Island,Korea:2012:455-465.
  • 10Haiguang Li,Gongqing Wu,Xuegang Hu,et al.A relation extraction method of Chinese named entities based on location and semantic features[J] .Applied Intelligence,2013,38(1):1-15.

共引文献61

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部