摘要
相比传统的水下滑翔机,飞翼式水下滑翔机具有更高的滑翔效率,但存在诸多技术难题,值得深入研究。基于以上技术背景,本文探讨了飞翼式水下滑翔机的滑翔性能分析和垂直面运动控制设计问题。建立垂直操纵面的动力学方程,解算水下滑翔机平衡条件下的运动状态,预报飞翼式水下滑翔机的运动性能。针对其操纵性和稳定性较差的特点,设计一个跟踪微分模糊PID控制器,并利用Matlab软件搭建仿真实验平台,从理论上验证该控制器。利用飞翼式水下滑翔机样机进行一系列的水池航行实验,主要包括:垂直面的潜浮切换和纵倾角跟踪。实验结果验证了飞翼式水下滑翔机大滑翔比的特性,结果表明:所设计的控制器可以有效地控制飞翼式水下滑翔机垂直面运动,在纵倾角跟踪和潜浮切换运动具有较好的控制精度和稳定性。
Flying wing underwater glider has higher gliding efficiency.However,there are still many technical problems,which are definitely worth exploring.So that,this paper considers the performance analysis and control design for wing-level flight of a flying wing underwater glider.In the present study,the dynamic equations in the vertical plane are first established.Following that,the performance analysis of a flying wing underwater glider is given,with assumption of that the glider has reached its equilibrium.Moreover,for its poor maneuverability and stability,a tracking differential fuzzy PID algorithm is proposed.And the control performance of a flying wing underwater is evaluated through computer simulation,based on MATLAB.Finally,a series wing-level flights of real experiments in a water tank are conducted,using a prototype of the flying wing underwater glider,in order to prove the above design and analysis.They consist of two cases:mode switching and flight angle following.The results show that the flying wing underwater glider owns the characteristic of high glide slope,and the designed controller is capable of handling the vertical motion of the flying wing glider.Besides,the good performance of following an expected gliding angle and mode switching is observed.
作者
李志超
乔岳坤
LI Zhichao;QIAO Yuekun(College of Economics and Management, Harbin Engineering University, Harbin 150001, China;State Key Laboratory of Underwater Vehicle, Harbin Engineering University, Harbin 150001, China)
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2022年第1期151-158,共8页
Journal of Harbin Engineering University
基金
国家重点研发计划(2017YFC0305700)
国家自然科学基金项目(U1806228,51879057).
关键词
飞翼式水下滑翔机
垂直面运动
性能分析
运动控制
策略优化
flying wing underwater glider
wing-level fight
performance analysis
control design
strategy optimization