期刊文献+

一种磁电偶极子的5G基站天线设计

Design of 5G base station antenna based on magneto⁃electricdipole
下载PDF
导出
摘要 Sub 6 GHz的3~5GHz的频段被作为5G基站天线的主频段进行使用,然而随着频段的升高,天线辐射范围的缩小及辐射功率衰减加大等问题不容忽视。文中设计了一款基于磁电偶极子的基站双极化天线单元,单元尺寸为0.50λ×0.50λ×0.23λ(中心频率为4 GHz),其在3~5 GHz内VSWR<1.5。天线单元相对带宽(VSWR<2)达到63.5%(2.9~5.6 GHz),其增益在3~5 GHz内大于7.8 dBi,单元的峰值增益达到了11 dBi左右,并实现了2×2的平面阵列仿真,天线阵列的峰值增益达到了17.2 dBi。由HFSS软件仿真可知,设计的天线不仅结构简单、紧凑,且覆盖带宽较大,能满足5G基站天线的需求。 The main frequency band(3~5 GHz)of Sub 6 GHz is taken as the main frequency band of 5G base station antennas.However,as the frequency band increases,the reduction of antenna radiation range and the increase of radiation power attenuation are obvious and cannot be ignored.A base station dual⁃polarized antenna unit based on the magneto⁃electric(ME)dipole is designed in this paper.Its unit size is 0.50λ×0.50λ×0.23λ(the center frequency is 4 GHz).When it is within 3~5 GHz,its VSWR<1.5,its relative bandwidth(VSWR<2)reaches 63.5%(2.9~5.6 GHz),its gain(within 3~5 GHz)>7.8 dBi,and its peak gain reaches about 11 dBi.In addition,the simulation of a 2×2 planar array is realized,and the peak gain of the antenna array reaches 17.2 dBi.It can be seen from thesimulation software HFSS that the designed antenna is not only simple and compact,but also covers a large bandwidth,so it can meet the requirements of 5G base station antenna.
作者 张双威 叶武剑 刘怡俊 王善进 ZHANG Shuangwei;YE Wujian;LIU Yijun;WANG Shanjin(School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China;School of Electronics and Intelligence,Dongguan University of Technology,Dongguan 523808,China)
出处 《现代电子技术》 2022年第3期5-9,共5页 Modern Electronics Technique
基金 广东省重点领域研发计划资助(2018B010115002,2018B010107003) 广东省科技发展专项计划资助(2016B090904001) 广东省教育厅创新人才项目和广东工业大学青年百人项目(220413548)。
关键词 5G基站天线 磁电偶极子 天线设计 天线阵列 峰值增益 双极化天线 5G base station antenna ME dipole antenna design antenna array peak gain dual⁃polarized antenna
  • 相关文献

参考文献2

二级参考文献82

  • 1高西奇,尤肖虎,江彬,潘志文.面向后三代移动通信的MIMO-GMC无线传输技术[J].电子学报,2004,32(F12):105-108. 被引量:10
  • 2METIS. Mobile and wireless communications enablers for the 2020 information society. In: EU 7th Framework Programme Project, https://www.metis2020.com.
  • 3Wen T, Zhu P Y. 5G: A technology vision. Huawei, 2013. http://www.huawei.com/en/about-huawei/publications/ winwin-magazine/hw-329304.htm.
  • 4Wang C X, Haider F, Gao X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122-130.
  • 53GPP. Physical Channels and Modulation (Release 11). 3GPP TS36.211. 2010.
  • 6Marzetta T L. How Much training is required for multiuser MIMO? In: Proceedings of the 40th Asilomar Conference on Signals, Systems, & Computers, Pacific Grove, 2006. 359-363.
  • 7Marzetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 2010, 9: 3590-3600.
  • 8Ngo H Q, Larsson E G, Marzetta T L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun, 2013, 61: 1436-1449.
  • 9You X H, Wang D M, Sheng B, et al. Cooperative distributed antenna systems for mobile communications. IEEE Wirel Commun, 2010, 17: 35-43.
  • 10You X H, Wang D M, Zhu P C, et al. Cell edge performance of cellular systems. IEEE J Sel Area Commun, 2011, 29: 1139-1150.

共引文献920

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部