期刊文献+

基于深度学习的故障诊断与预测方法综述 被引量:15

Summary of fault diagnosis and prediction methods based on deep learning
下载PDF
导出
摘要 智能制造背景下,机械设备趋于复杂庞大,海量、多源、高维度、非结构的工业数据给系统管理监测带来更大难度,设备的故障诊断与预测更显重要。传统故障诊断与预测方法难以建立准确的数据模型,在设备故障诊断预测应用方面受到很大局限,深度学习以其强大的自主学习非线性数据表示和模式识别的能力在许多领域都有重大突破,在工业设备的故障诊断与预测领域也得到广泛关注。文中对四类经典的深度学习模型:深度置信网络、卷积神经网络、自动编码器及其变体、循环神经网络的网络结构和模型思想作详细介绍,阐述并总结了这四类深度学习模型在故障诊断与预测领域的研究成果,讨论了基于深度学习的故障诊断与预测方法的优势与不足,对未来可能的研究方向作了展望。 In the context of intelligent manufacturing,the mechanical equipments tend to be complex and huge,and the massive,multi⁃source,high⁃dimensional and non⁃structured industrial data have been bringing greater difficulty to system management and monitoring,so the equipment fault diagnosis and prediction have become more important.However,it is difficult for the traditional fault diagnosis and prediction methods to establish the accurate data models,so the traditional methods are greatly limited in equipment fault diagnosis and prediction.Deep learning has made major breakthroughs in many fields with its powerful ability of autonomically learning non⁃linear data representation and pattern recognition,and has also received widespread attention in the field of fault diagnosis and prediction of industrial equipment.Therefore,the network structures and model ideas of the four types of classic deep learning models,i.e.,deep belief network(DBN),convolutional neural network(CNN),auto⁃encoder(AE)and its variant,and recurrent neural network(RNN),are introduced in detail.The research achievements about the four types of models in the field of fault diagnosis and prediction are expounded and summarized,the advantages and disadvantages of fault diagnosis and prediction methods based on deep learning are discussed,and possible future research directions are prospected.
作者 彭成 李凤娟 蒋金元 PENG Cheng;LI Fengjuan;JIANG Jinyuan(School of Computer Science,Hunan University of Technology,Zhuzhou 412007,China;School of Automation,Central South University,Changsha 410083,China)
出处 《现代电子技术》 2022年第3期111-120,共10页 Modern Electronics Technique
基金 国家自然科学基金资助项目(61871432) 湖南省自然科学基金资助项目(2020JJ4275)
关键词 故障诊断 故障预测 深度学习模型 RUL预测 特征提取 网络结构 fault diagnosis fault prediction deep learning model RUL prediction feature extraction network structure
  • 相关文献

参考文献1

二级参考文献117

  • 1周东华,孙优贤,席裕庚,张钟俊.一类非线性系统参数偏差型故障的实时检测与诊断[J].自动化学报,1993,19(2):184-189. 被引量:26
  • 2孙卫祥,陈进,伍星,董广明,宁佐贵,王东升,王雄祥.基于信息融合的支撑座早期松动故障诊断[J].上海交通大学学报,2006,40(2):239-242. 被引量:13
  • 3邵晨曦,张俊涛,范金锋,白方周.基于定性定量知识的故障诊断[J].计算机工程,2006,32(6):189-191. 被引量:3
  • 4谭阳红,叶佳卓.模拟电路故障诊断的小波方法[J].电子与信息学报,2006,28(9):1748-1751. 被引量:20
  • 5王洪江,孙保民,田进步.定性仿真在锅炉状态监控和故障诊断中的应用[J].工程热物理学报,2007,28(1):12-14. 被引量:4
  • 6Rajakarunakaran S, Venkat P, Devaraj D, Surya P R K. Artificial neural network approach for fault detection in LPG transfer system. Applied Soft Computing, 2008, 8(1): 740 - 748
  • 7Quteishat A, Lim C P. A modified fuzzy min-max neural network with rule extraction and its application to fault detection and classification. Applied Soft Computing, 2008, S(2): 985-995
  • 8Dong L X, Xiao D M, Liang Y S, Liu Y L. Rough set and fuzzy wavelet neural network integrated with least square weighted fusion algorithm based fault diagnosis research for power transformers. Electric Power Systems Research, 2008, 78(1): 129-136
  • 9Thukaram D, Khincha H P, Vijaynarasimha H P. Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Transactions on Power Delivery, 2005, 20(2): 710-721
  • 10Jack L B, Nandi A K. Support vector machines for detection and characterization of rolling element bearing faults. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2001, 215(9): 1065-1074

共引文献306

同被引文献135

引证文献15

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部