期刊文献+

Computational engineering of the oxygen electrode-electrolyte interface in solid oxide fuel cells

原文传递
导出
摘要 The Ce_(0.8)Gd_(0.2)O_(2)−δ(CGO)interlayer is commonly applied in solid oxide fuel cells(SOFCs)to prevent chemical reactions between the(La_(1−x)Sr_(x))(Co_(1−y)Fe_(y))O_(3−δ)(LSCF)oxygen electrode and the Y_(2)O_(3)-stabilized ZrO_(2)(YSZ)electrolyte.However,formation of the YSZ–CGO solid solution with low ionic conductivity and the SrZrO_(3)(SZO)insulating phase still happens during cell production and long-term operation,causing poor performance and degradation.Unlike many experimental investigations exploring these phenomena,consistent and quantitative computational modeling of the microstructure evolution at the oxygen electrode–electrolyte interface is scarce.We combine thermodynamic,1D kinetic,and 3D phase-field modeling to computationally reproduce the element redistribution,microstructure evolution,and corresponding ohmic loss of this interface.The influences of different ceramic processing techniques for the CGO interlayer,i.e.,screen printing and physical laser deposition(PLD),and of different processing and long-term operating parameters are explored,representing a successful case of quantitative computational engineering of the oxygen electrode–electrolyte interface in SOFCs.
出处 《npj Computational Materials》 SCIE EI CSCD 2021年第1期1074-1083,共10页 计算材料学(英文)
基金 This work is supported by European Horizon 2020-Research and Innovation Framework Programme(H2020-JTI-FCH-2015-1)under grant agreement No.735918(INSIGHT project) by EUDP through project no.64017-0011(EP2Gas) In addition,the National Natural Science Foundation of China(Nos.51801116 and 52001176) Shandong Province Key Research and Development Plan(Nos.2019GHZ019,2019JZZY010364,and 2019JZZY020329) the Youth Innovation and Technology Support Program of Shandong Provincial Colleges and Universities(No.2020KJA002) are acknowledged.The authors would like to acknowledge Dr.Arata Nakajo and Dr.Giorgio Rinaldi from EPFL for providing the original FIB-SEM data and fruitful discussion.
  • 相关文献

参考文献1

二级参考文献26

  • 1MEGAW H D.Crystal structure of double oxides of the perovskite type[J].Proc Phys Soc,1946,58:133-141.
  • 2SMITH A J,WELCH A J E.Cation-size control of structure phase transitions in tin perovskites[J].Acta Crystallogr,1960,13:653-656.
  • 3MATHEWS M D,MIRZA E B,MOMIN A C.High-temperature X-ray diffractometric studies of LaCrO3[J].J Mater Sci Lett,1991,10:3246-3248.
  • 4VAN ROOSMALEN J A M,VAN VLAANDEREN,CORDFUNKE E H P.On the structure of SrZrO3[J].J Solid State Chem,1992,101:59-65.
  • 5TILLOCA G,PEREZ M,JORBA Y.X-ray characterization of Sr3Zr2O7 hydrate[J].Res Intern Haut Temp Refract,1964,1:331-342.
  • 6AHTEE A,AHTEE M,GLAZER A M,HEWAT A W.The structural phase transitions in strontium zirconate revisited[J].Acta Crystallogr B,1976,32:3243-3246.
  • 7KAMISHIMA O,HATTORI T,OHTA K,CHIBA Y,ISHIGAME M.Dielectric relaxation in Yb-doped SrZrO3[J].J Phys:Condens Matter,1999,11:5355-5365.
  • 8CARLSSON L.High-temperature phase transitions in SrZrO3[J].Acta Crystallogr,1967,23:901-905.
  • 9KENNEDY B J,HOWARD C J.High-temperature phase transition in SrZrO3[J].Phy Rev,1999,59(6):4023-4027.
  • 10YAMANAKA S,KUROSAKI K,OYAMA T,MUTA H,UNO M,MATSUDA T,KOBAYASHI S I.Thermodynamic properties of perovskite-type strontium cerate and zirconate[J].J Am Ceram Soc,2005,88(6):1496-1499.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部