期刊文献+

多发性骨髓瘤患者肾损害预测模型的建立与验证 被引量:3

DEVELOPMENT AND VALIDATION OF A PREDICTION MODEL FOR RENAL IMPAIRMENT IN PATIENTS WITH MULTIPLE MYELOMA
下载PDF
导出
摘要 目的建立多发性骨髓瘤(MM)并发肾损害(RI)的预测模型并进行验证。方法收集2012年6月1日—2019年10月31日于我院确诊的958例MM患者的临床资料,其中RI患者197例,非RI患者761例,按病例纳入时间分为训练组(RI患者134例,非RI患者538例)和验证组(RI患者63例,非RI患者223例)。应用单因素和多因素Logistic回归分析训练组MM患者并发肾损害的危险因素。根据赤池信息准则(AIC)建立MM并发RI模型,并将该模型用于验证组人群进行验证。采用受试者工作特征曲线(ROC)、Hosmer-Lemeshow检验及决策曲线分析(DCA)验证与评估该模型的区分度、校准度和临床实用价值。结果多因素Logistic回归分析显示,血尿酸、尿蛋白、血红蛋白、球蛋白、血免疫球蛋白轻链κ/λ比值、校正血清钙、尿隐血为MM患者RI的独立危险因素。由上述指标构建MM并发RI的预测模型。训练组和验证组ROC曲线下面积分别为0.882和0.928,Hosmer-Lemeshow检验P=0.374(P>0.05),显示该模型具有良好的区分度和校准度,DCA结果表明该模型的安全性及患者的临床净获益较高。结论MM并发RI预测模型的准确度和临床实用性较高,利于MM并发RI早期防治。 Objective To develop and validate a model for predicting renal impairment(RI)in patients with multiple myeloma(MM).Methods We collected the clinical data of 958 patients with MM who were diagnosed in the Affiliated Hospital of Qingdao University from June 1,2012 to October 31,2019,including 197 patients with RI and 761 patients without RI.According to the time of inclusion,the patients were divided into training group(134 cases of RI and 538 cases of non-RI)and validation group(63 cases of RI and 223 cases of non-RI).Univariate and multivariate logistic regression analyses were used to determine risk factors for the presence of RI in MM using the data of the training group.A model for predicting RI in patients with MM was established according to the Akaike information criteria,and was validated in the validation group.The discriminatory ability,calibration,and clinical practicability of the model were evaluated by a receiver operating characteristic(ROC)curve,the Hosmer-Lemeshow test,and decision curve analysis(DCA),respectively.Results The multivariate logistic regression analysis showed that serum uric acid,urinary protein,hemoglobin,globulin,serum immunoglobulin free light chain ratio(κ/λ),corrected serum cal-cium,and hematuria were independent risk factors for the presence of RI in MM.These indicators were used to construct a prediction model for RI in MM.The area under the ROC curve was 0.882 in the training group and 0.928 in the validation group.The P value for the Hosmer-Lemeshow test was 0.374(>0.05),suggesting good discrimination and calibration of the model.DCA showed that this model had good safety and high net clinical benefit.Conclusion This prediction model for RI in MM has high accuracy and good clinical practicality,and can facilitate early prevention and treatment of RI in MM.
作者 刘莹莹 崔莉 卜泉东 郭丹丹 谷晓娟 胥雪玲 刘雪梅 LIU Yingying;CUI Li;BU Quandong;GUO Dandan;GU Xiaojuan;XU Xueling;LIU Xuemei(Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China)
出处 《精准医学杂志》 2021年第6期544-549,554,共7页 Journal of Precision Medicine
基金 青岛市民生科技计划项目(19-6-1-18-nsh) 青岛大学医学部“临床医学+X”工程科研项目(2018-21)。
关键词 多发性骨髓瘤 肾损害 危险因素 回归分析 列线图 Multiple myeloma Renal impairment Risk factors Regression analysis Nomograms
  • 相关文献

参考文献3

二级参考文献23

  • 1杨成,兰天飙,江亚芳.以肾脏损害为首发症状的多发性骨髓瘤临床分析[J].中华临床医师杂志(电子版),2011,5(14):4231-4234. 被引量:2
  • 2Vincent Rajkumar S. Multiple myeloma: 2014 update on diagnosis, risk-stratification, and management[ J]. Am J Hematol, 2014, 89 (10) :999-1009. DOI : 10.1002/ajh.23810.
  • 3Merlini G, Wechalekar AD, Palladini G. Systemic light chain amyloidosis: an update for treating physicians [ J ]. Blood, 2013, 121 (26) :5124-5130. DOI : 10.1182/blood-2013-01-453001.
  • 4Department of Hematology Physicians Branch of Chinese Medical Doctor Association. Guidelines for the diagnosis and treatment of muhiple myeloma in China I revised in 2013) [ J]. Chin J Intern Med, 2013, 52 ( 9 ) : 791-795. DOI: 10. 3760/cma. j. issn. 0578- 1426.2013.09.026.
  • 5Arlguille S, Bryant C. Monaoclonal gammopathy of uiKletennlned significanwe [J]. CMAJ, 2013, 185(15) : 1345. DOI: 10.1503/cmaj.122090.
  • 6Wang X, Zhu YB, Cui HP, et al. Aberrant promoter methylation of pl5INK4b and pl6INK4a genes may contribute to the pathogenesis of multiple myeloma : a meta-analysis [ J ]. Tumour Biol, 2014, 35(9) :9035-9043. DOI: 10.1007/s13277-014-2054-2.
  • 7Yang C, Lan TB, Jiang YF. Clinical analysis of multiple myeloma with renal damage as initial symptom [ J] Ch J Clinicians (Electronic Edition), 2011, 5(14) :4231-4234. DOI: 10.3877/ cma.j.issn. 1674-0785.2011.14.045.
  • 8Abraham RS, Clark RJ, Bryant SC, et al. Correlation of serum immunoglobulin free light chain quantification with urinary Bence Jones protein in light chain myeloma [ J ]. Clin Chem, 2002, 48 (4) :655-657.
  • 9Knudsen LM, Hippe E, Hjorth M, et al. Renal function in newly diagnosed multiple myeloma: a demographic study of 1353 patients. The Nordic Myeloma Study Group [ J 1. Eur J Haematol, 1994, 53(4) :207-212.
  • 10Morris C, Drake M, Apperley J, et al. Efficacy and outcome of autologous transplantation in rare myelomas [ J ]. Haematologica, 2010, 95(12) :2126-2133. DO1 : 10.3324/haematol.2010.022848.

共引文献45

同被引文献27

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部