期刊文献+

基于移相控制的无线电能传输系统离散迭代建模 被引量:1

Discrete-Time Modeling of Wireless Power Transfer System Based on Phase-Shift Control
下载PDF
导出
摘要 该文考虑电容和电感寄生电阻的影响,建立基于移相控制的串联补偿无线电能传输系统的离散迭代模型。给出一个开关周期内,离散迭代建模不同状态区间的划分原则,并通过列写每一状态区间的物理方程,得到状态表达式。同时,总结不同状态区间系统状态方程系数矩阵和输出矩阵与系统参数的关系,最终建立一个开关周期内系统精确的离散迭代模型。利用离散状态空间表达式求取系统的稳态工作点。为了描述无线电能传输系统的动态性能,利用扰动传递的思想,建立基于离散迭代模型的小信号模型。仿真和实验结果证明了所建立模型的有效性和准确性。 In this paper,considering the influence of parasitic resistance of capacitance and inductance,a discrete-time model of series compensation wireless power transfer system based on phase-shift control is established.The partition principle of different state intervals for discrete-time modeling in one switching period is given.By deriving the physical equations of each state interval,the state expression is obtained.In addition,the relationship between coefficient matrix and output matrix of state equation and system parameters is summarized.Finally,an accurate discrete-time model of system in one switching period is established.The steady-state operating point of the system is obtained by state space equation of discrete-time model.In order to describe the dynamic performance of wireless power transfer system,a small signal model based on discrete-time model is established by using the idea of disturbance transfer.Simulation and experimental results show the effectiveness and accuracy of the model.
作者 马天录 王跃 胡秀芳 林子杰 Ma Tianlu;Wang Yue;Hu Xiufang;Lin Zijie(State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University,Xi’an 710049 China)
出处 《电工技术学报》 EI CSCD 北大核心 2021年第S02期644-653,共10页 Transactions of China Electrotechnical Society
关键词 无线电能传输 离散迭代建模 串联补偿 移相控制 Wireless power transfer(WPT) discrete-time modeling series compensation phaseshift control
  • 相关文献

参考文献6

二级参考文献90

  • 1Zhang Xian, Yang Qingxin, Chen Haiyan, et al. Analysis of a novel near-field non-radiative wireless power transmission systemiC]//2011 International Conference on Control, Automation and Systems Engineering (CASE 2011). Singapore: IEEE, 2011: 1-4.
  • 2Karalis A, Joannopoulos J D, Soljacic M. Efficient wireless non-radiative mid-range energy transfer [J]. Annals of Physics January Special Issue 2008, 323(1): 34-48.
  • 3Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances [J]. Science, 2007, 317(5834): 83-86.
  • 4Sample A P, Yeager D J, Powledge P S, et al. Design of an RFID-based battery-free programmable sensing platform[J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(11): 2608-2615.
  • 5Sample A P, Meyer D T, Smith J R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer[J]. IEEE Transactions on Industrial and Electronics, 2011, 58(2): 544-554.
  • 6Takehiro I, Hiroyuki O, Toshiyuki U, et al. Wireless power transfer during displacement using electromagnetic coupling in resonance[J]. IEEE Transactions on IndustryApplications, 2010, 130(1): 76-83.
  • 7Beh T C, Imura T, Kato M, et al. Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching [C]//2010 IEEE International Symposium on Industrial Electronics (ISIE2010). Bari: IEEE, 2010: 2011-2016.
  • 8Imura T, Okabe H, Hori Y. helical antennas of wireless Basic experimental study on power transfer for Electric Vehicles by using magnetic resonant couplings[C]//IEEE Vehicle Power and Propulsion Conference, 2009(VPPC '09). Dearborn: IEEE, 2009: 936-940.
  • 9Nilsson J W. Electrical circuits[M]. 4th ed. Reading, MA: Addison-Wesley, 1993: 358-390.
  • 10Stratton J A. Electromagnetic theory[M]. New York: McGraw-Hill, 1941: 90-105.

共引文献258

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部