摘要
针对配电物联网节点部署覆盖率低、感知可靠性差和部署成本最优化的问题,提出了一种基于多群落协作进化算法的配电物联网节点优化部署方法。在分析配电物联网节点部署关键影响因素的基础上,构建了包括节点部署成本和节点覆盖率的配电物联网节点部署优化评价指标体系,建立了节点部署的全局优化数学模型,并采用多群落协作进化算法进行群落内与群落间的异步并行优化,提升了对于配电物联网节点优化部署问题的适应能力,最后通过试验证明所提方法的有效性,为配电物联网节点优化部署提供了新的思路和方法。
Aiming at the problems of low deployment coverage,poor perceived reliability and optimization of deployment cost of distribution IoT nodes,a multi community cooperative evolutionary algorithm based optimal deployment method for distribution IOT nodes is proposed.Based on the analysis of the key influencing factors of the node deployment of the distribution Internet of things,the evaluation index system of the node deployment optimization of the distribution IoT including the node deployment cost and node coverage rate is constructed,the global optimization mathematical model of the node deployment is established,and the asynchronous parallel optimization within and among the communities is carried out by using the community cooperative evolution algorithm,which improves the performance of the distribution IOT node.Finally,experiments show the effectiveness of the proposed method,which provides a new idea and method for the optimal deployment of distribution IoT nodes.
作者
郭成
梁珉清
牛红伟
冯锋锋
王加富
GUO Cheng;LIANG Minqing;NIU Hongwei;FENG Fengfeng;WANG Jiafu(Faculty of Electric Power Engineering,Kunming University of Science and Technology,Kunming 650500,China;Power Science Research Institute,Yunnan Power Grid Co.,Ltd.,Kunming 650217,China;School of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500,China;School of Mechanical and Vehicle Engineering,Beijing University of Technology,Beijing 100000,China;Shanghai Hong Rock Mechanical Technology,Shanghai 201615,China;Chuxiong Wuding Power Supply Bureau of Yunnan Power Grid Co.,Ltd.,Wuding 651600,China)
出处
《电工技术》
2021年第24期164-167,共4页
Electric Engineering
基金
国家重点研发计划的支持(编号2017YFB1400301)。
关键词
配电物联网
节点部署
全局优化
多群落协作进化算法
distribution IoT
node deployment
global optimization
multi community cooperative evolutionary algorithm