期刊文献+

分数阶混沌系统自适应有限时间追踪控制

Adaptive finite time tracking control for fractional order chaotic system
下载PDF
导出
摘要 基于实现一类参数未知三维分数阶混沌系统有限时间追踪控制的目的,采用分数阶系统稳定性地理对分数阶Zhang混沌系统进行了动力学性质分析,采用有限时间控制法设计了一个自适应有限时间追踪控制器,通过理论计算和MATLAB数值仿真,验证了该控制器的有效性,实现了参数未知分数阶混沌系统的自适应有限时间追踪控制;在保持系统各个参数不变的情况下加入外部随机扰动,通过MATLAB数值仿真可知,该控制器具有抗干扰性。 In order to realize the finite time tracking control of a class of three⁃dimensional fractional order chaotic systems with unknown parameters,the dynamic properties of the fractional order Zhang chaotic system are analyzed by using the stability of the fractional order system.An adaptive finite time tracking controller is designed by using the finite time control method.The effectiveness of the controller is verified by theoretical calculation and MATLAB numerical simulation.The adaptive finite time tracking control of fractional order chaotic system with unknown parameters is proposed.The external random disturbance is added while keeping the parameters of the system unchanged.Through MATLAB numerical simulation,it is concluded that the controller has anti⁃interference performance.
作者 李贤丽 汤俊杰 朱金元 温玉玉 LI Xianli;TANG Junjie;ZHU Jinyuan;WEN Yuyu(School of Physics and Electronic Engineering,Northeast Petroleum University,Daqing 163318,China)
出处 《电子设计工程》 2022年第3期131-135,共5页 Electronic Design Engineering
关键词 有限时间控制 追踪控制 自适应控制 分数阶混沌 finite time control tracking control adaptive control fractional order chaos
  • 相关文献

参考文献4

二级参考文献39

  • 1李瑞红,徐伟,李爽.一类新混沌系统的线性状态反馈控制[J].物理学报,2006,55(2):598-604. 被引量:30
  • 2王兴元,王勇.基于线性分离的自治混沌系统的投影同步[J].物理学报,2007,56(5):2498-2503. 被引量:29
  • 3谌龙,王德石.陈氏混沌系统的稳定追踪控制[J].控制与决策,2007,22(8):935-938. 被引量:2
  • 4Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64(8): 821-824.
  • 5Mahmoud E E. Complex complete synchronization of two nonidentical hyperchaotic complex nonlinear systems[J]. Mathematical Methods in the Applied Sciences, 2014, 37(3): 321-328.
  • 6Matheny M H, Grau M, Villanueva L G, et al. Phase synchronization of two anharmonic nanomechanical oscillators[J]. Physical Review Letters, 2014, 112(1): 014101.
  • 7Njah A N. Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques[J]. Nonlinear Dynamics, 2010, 61(1/2): 1-9.
  • 8Lü L, Luan L, Meng L, et al. Study on spatiotemporal chaos tracking synchronization of a class of complex network[J]. Nonlinear Dynamics, 2012, 70(1): 89-95.
  • 9Li C L. Tracking control and generalized projective synchronization of a class of hyperchaotic system with unknown parameter and disturbance[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1): 405-413.
  • 10Sun K H, Sprott J C. Dynamics of a simplified Lorenz system[J]. International Journal of Bifurcation and Chaos, 2009, 19(4): 1357-1366.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部