期刊文献+

碲锌镉晶体生长炉自主设计与控温性能实验

Independent Design and Temperature Control Performance Experiment of the CdZnTe Crystal Growth Furnace
下载PDF
导出
摘要 针对直径4英寸碲锌镉单晶材料生长的需求,在研究国外碲锌镉晶体材料生长取得的成果基础上,自主设计了一种基于移动炉体技术的碲锌镉晶体生长炉。炉体由4种规格的六段温控加热单元组成,采用工控机控制伺服电机来驱动滚珠丝杆直线导轨实现炉体升降,炉体内腔设置有刚玉陶瓷管及高温金属热管组成的加热炉管,通过高精度铂铑铂热电偶、欧陆、变压器及可控硅控制加热单元,基于模糊+PID控制算法和策略来控制加热炉温的温度分布。开展了加热温度稳定性和加热控温性能实验,结果表明:炉体内腔加热温度持续控温200 h,相同位置的温度波动±0.005℃,加热温度偏差≤±0.1℃;炉腔上、下部恒温区长度分别为400 mm和240 mm,中部温度梯度区长度约136 mm,加热温度1098℃附近的温度梯度为0.92℃·mm^(-1)。上述参数满足碲锌镉晶体生长炉的自主设计与控温性能要求。 In response to the demand for the growth of 4-inch diameter single-crystal Cd Zn Te materials and based on the results obtained from studying the growth of foreign Cd Zn Te crystal materials,a Cd Zn Te crystal growth furnace based on the mobile heating method was independently designed.The heating unit of the furnace body comprises four specifications with six temperature controlled sections,which are controlled by an industrial computer that controls the servo motor to drive the ball screw linear guide to achieve lifting.The inner cavity of the furnace was fitted with a heating tube comprising corundum ceramic tubes and high-temperature metal heat pipes using high-precision platinum-rhodium-platinum thermocouples,Eurofins,transformers,and thyristor control heating units.This furnace is based on a fuzzy+PID control algorithm with a strategy to adjust and control the temperature distribution of the heating furnace.This furnace was used to perform stability and control performance experiments during temperature heating.Experimental results showed that the heating temperature of the inner cavity of the furnace was continuously controlled for200 h,temperature fluctuation at the same position was±0.005℃,and heating temperature deviation was≤±0.1℃.The lengths of the upper and lower constant-temperature zones of the furnace cavity were 400 and240 mm,respectively.The length of the temperature gradient zone in the middle of the furnace cavity was approximately 136 mm.The length of the constant-temperature zone in the lower part of the furnace cavity was 240 mm.At a heating temperature of approximately 1098℃,the temperature gradient was 0.92℃·mm^(-1).Experimental results showed that this furnace meets the independent design and temperature control performance requirements for a Cd Zn Te crystal growth furnace.
作者 罗亚南 陈亦忻 郭关柱 李照存 许聪 LUO Yanan;CHEN Yixin;GUO Guanzhu;LI Zhaocun;XU Cong(College of Mechanical and Electrical Engineering,Yunnan Agricultural University,Kunming 650201,China;Kunming Institute of Physics,Kunming 650223,China;Kunming WATERL Electromechanical Equipment Co.,Ltd.,Kunming 650204,China;Yunnan Yuanfengxiang Electromechanical Equipment Co.,Ltd.,Kunming 650224,China)
出处 《红外技术》 CSCD 北大核心 2022年第1期73-78,共6页 Infrared Technology
基金 国家科技型中小企业技术创新基金项目(13C26215305429) 云南省产业技术领军人支持项目(YNWR-CYJS-2018-050)。
关键词 移动炉体加热法 碲锌镉晶体 晶体生长炉 温控性能 远红外探测器 traveling heater method CdZnTe crystal crystal growth furnace temperature control performance far infrared detector
  • 相关文献

参考文献5

二级参考文献89

  • 1介万奇.Bridgman法晶体生长技术的研究进展[J].人工晶体学报,2012,41(S1):24-35. 被引量:11
  • 2黄晖,潘顺臣.碲锌镉晶片退火的显微Raman光谱分析[J].红外技术,2004,26(5):37-39. 被引量:6
  • 3刘洪涛,桑文斌,袁铮,闵嘉华,詹峰.低压布里奇曼法CdZnTe晶体生长及其热应力模拟[J].稀有金属材料与工程,2007,36(6):1016-1019. 被引量:3
  • 4Y. C. Liu, B. Roux, C. W. Lan. Effects of accelerated crucible rotation on segregation and interface morphology fo vertical Bridgman crystal growth: Visualization and simulation[J]. Crystal Growth, 2007, 304: 236-243.
  • 5A. Yeckel, F. P. Doty, et al. Effect of steady crucible rotation on segregation in high-pressure vertical Bridgman growth of cadmium zinc telluride[J]. Crystal Growth, 1999, 203: 87-!02.
  • 6C. Martinez-Tomas, V. Mufioz. CdTe crystal growth process by the Bridgman method: numerical simulation[J]. Crystal Growth, 2001, 222: 435-451.
  • 7K. Edwards, J. J. Derby. Understanding horizontal Bridgman shelf growth of cadmium telluride and cadmium zinc telluride I. Heat and momentum transfer[J]. Crystal Growth, 1997, 179: 120-132.
  • 8J P Holman. Heat Transfer [M].北京:机械工业出版社,2005.
  • 9Butler J F, et al. IEEE Transctions on Nuclear Science, 1992, 39: 605-609.
  • 10Niemela A, Silila H, Ivanev V I. Nucl. Inst. and Meth. in Phys. Res., 1996, A 377: 484-486.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部