期刊文献+

交叉旋翼悬停气动性能和流场干扰

Aerodynamic Performance and Flow Interaction of the Intermeshing Rotors in Hover
下载PDF
导出
摘要 针对交叉旋翼复杂的气动干扰问题,建立了一种适合于交叉旋翼气动分析的数值模拟方法.该方法采用三维非定常Reynolds平均Navier-Stokes(RANS)方程来求解流场,使用动态嵌套网格方法模拟旋翼运动.使用共轴旋翼悬停实验结果验证了该方法的准确性.利用该方法模拟了交叉旋翼在不同状态下的流场,计算了拉力和悬停效率,并与单旋翼、共轴旋翼计算结果进行对比分析,结果显示交叉旋翼流场存在较强的涡-涡和桨-涡干扰,旋翼桨尖涡在90°/270°附近相交;交叉旋翼的拉力系数及悬停效率随旋翼中心间距增大而增大,随交叉角变化较小;在相同总距角下,交叉旋翼悬停效率高于单旋翼和共轴双旋翼3%~8%. Aiming at the complex aerodynamic interference problem of intermeshing rotors,a numerical simulation method was established suitable for aerodynamic analysis of the intermeshing rotors.The method solved the three-dimensional unsteady Reynolds Average Navier-Stokes(RANS)equations to simulate the flow field,and used the moving embedded grids to simulate the rotor motion.The hovering experiment results of coaxial rotors verified the accuracy of the method.The method was used to simulate the flow field of intermeshing rotors in different states,and calculate the thrust coefficient and hover efficiency.The results were compared with those of single rotors and coaxial rotors.The results show that there are strong vortex-vortex and propeller-vortex interactions in the intermeshing-rotor flow field.The tip vortices of the rotor blades are intersected near 90°/270°.The thrust coefficient and hovering efficiency of the intermeshing rotor increase with the increase of the rotor center spacing,and the change is small with the intersection angle.The hovering efficiency of the intermeshing rotors is 3%to 8%higher than that of single rotors and coaxial rotors at the same collective pitch.
作者 吴伟伟 马存旺 张练 WU Wei-wei;MA Cun-wang;ZHANG Lian(CH, China Academy of Aerospace Aerodynamics, Beijing 100074, China)
出处 《气体物理》 2022年第1期30-37,共8页 Physics of Gases
关键词 交叉旋翼 非定常流场 气动干扰 运动嵌套网格 悬停状态 intermeshing rotors unsteady flow field aerodynamic interaction moving embedded grids hovering condition
  • 相关文献

参考文献11

二级参考文献67

  • 1李春华,曹金华,吴裕平.直升机旋翼流场特性PIV试验分析[J].直升机技术,2012(1):6-10. 被引量:4
  • 2许和勇,叶正寅,王刚,史爱明.聚合多重网格法在旋翼前飞流场计算中的应用[J].航空动力学报,2007,22(2):251-256. 被引量:9
  • 3Leishman J G. Principle of helicopter aerodynamics [M ]. New York : Cambridge University Press, 2000.
  • 4Huston R J. Wind tunnel measurements of performance, blade motions, and blade air loads for tandem-rotor configurations with and without overlap [R]. NASA TN D-1971, 1963.
  • 5Zili T, Mao S. Flow analysis of twin-rotor configurations by navier-strokes simulation [J]. Journal of the American Helicopter Society, 2000, 45 (2):97- 105.
  • 6Stepniewski W Z, Keys C N. Rotary-wing aerodynamics[M]. New York:Dover Publications, 1981.
  • 7Dingeldein R C. Wind-tunnel studies of the performance of multirotor configurations[R]. NACA TN 3236, 1954.
  • 8Harris F D. Twin rotor hover performance [J]. Journal of the American Helicopter Society, 1999,44 (1) :34-37.
  • 9BHAGWAT M J, LEISHMAN J G. Stability analysis of helicopter rotor wakes in axial flight[J]. Journal of the American Helicopter Society, 2000, 45(2): 165- 178.
  • 10LORBER P F, STAUTER R C, LANDGREBE A J. A Comprehensive hover test of the airloads and airflow of an extensively instrumented model helicopter rotor[A].Proceedings of the American Helicopter Society 45th Annual Forum[C]. 1989.

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部