期刊文献+

基于人工鱼群优化BP神经网络的光伏功率预测算法 被引量:3

Photovoltaic Power Prediction Algorithm Based on Artificial Fish Swarm Optimization BP Neural Network
下载PDF
导出
摘要 光伏发电的间歇性和不稳定性是影响光伏电能质量的重要因素之一。低质量电能并网会给电网安全运行带来巨大影响,导致电网消纳光伏的能力下降。光伏功率预测可以有效解决这一问题。然而,目前的光伏功率预测算法大多存在速度和精度不能兼顾的问题。为解决此问题,提出将人工鱼群算法与BP神经网结合,利用人工鱼群算法优化神经网络的权值和阈值。通过MATLAB软件建模和仿真运算,证明了光伏功率预测方法的运算速度较快,精度较高。 The intermittency and instability of photovoltaic power generation is the important factors affecting photovoltaic power quality.The grid-connection of low-quality power will have a huge impact on the safe operation of the power grid,leading to the decline of the power grid's ability to absorb photovoltaic energy.Photovoltaic power prediction can effectively solve this problem.However,most of the current photovoltaic power prediction algorithms cannot take both speed and accuracy into account.In order to solve this problem,this paper combines the artificial fish swarm algorithm with BP neural network,and uses the artificial fish swarm algorithm to optimize the weights and thresholds of the neural network.MATLAB software was used to build the model and simulation operation,which proved that the photovoltaic power prediction method is faster and more accurate.
作者 王政宇 王胜辉 李潇潇 赵音 田巍 WANG Zheng-Yu;WANG Sheng-Hui;LI Xiao-Xiao;ZHAO Yin;TIAN Wei(School of Electric Power,Shenyang Institute of Engineering,Shenyang 110136;New Energy Development Department,Liaoning Energy Investment(Group)Co.,Ltd.,Shenyang 110000;Research and Development Department,Liaoning Solar Energy R&D Co.,Ltd.,Shenyang 110136,Liaoning Province;Engineering Department,Liaoning Solar Energy R&D Co.,Ltd.,Shenyang 110136,Liaoning Province)
出处 《沈阳工程学院学报(自然科学版)》 2022年第1期7-11,19,共6页 Journal of Shenyang Institute of Engineering:Natural Science
基金 辽宁省“百千万人才工程”项目(辽人社函2020[78]号)。
关键词 光伏 功率预测 人工鱼群 BP神经网络 Photovoltaic Power prediction Artificial fish swarm algorithm BP neural network
  • 相关文献

参考文献7

二级参考文献78

共引文献342

同被引文献27

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部