期刊文献+

生物信息学分析在非小细胞肺癌关键通路和基因鉴定中的应用

Identification of key pathways and genes in non-small cell lung cancer using bioinformatics analysis
下载PDF
导出
摘要 目的通过高通量平台筛选差异表达基因间的相互联系和其相互作用的途径。方法从高通量基因表达数据库(GEO)下载原始数据,比较非小细胞肺癌患者与健康样本的基因表达谱,确定差异表达基因(Differential Gene Expression,DEGs)和差异表达的microRNAs(DEMs)。随后利用GeneSpring软件筛选了DEGs,并进行基因本体论(GO)和关键基因和基因组百科库(KEGG)通路富集分析。结果共筛选出460个DEGs和25个DEMs,其中,CCNB1、CDK1、CDC45、CCNB2、BUB1、CD36和几种miRNAs(例如miR-9和miR-451)可能是与NSCLC有关的关键基因。结论数据挖掘与整合是预测NSCLC发生、发展的有用工具,有助于进一步了解肿瘤发生发展的机制。 Purpose This study aims to screen the interaction between differentially expressed genes and their interaction pathways through high-throughput platforms.Methods In the present study,we downloaded the original data from Gene Expression Omnibus(GEO).Gene expression profiles of cancer cells in patients with NSCLC were compared with those in healthy colon epitheliums to identify the differentially expressed genes(DEGs)and microRNAs(DEMs).Subsequently,the DEGs were screened using GeneSpring software,followed by gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.Results In our study,a total of 460 DEGs and 25 DEMs were screened out,and CCNB1,CDK1,CDC45,CCNB2,BUB1,CD36 and several miRNAs such as miR-9 and miR-451 might be key genes related to NSCLC.Conclusions Our results suggested that data mining and integration could be a useful tool to predict progression of NSCLC and to understand the mechanism of the occurrence and development of tumor.
作者 欧阳慧敏 朱虎全 郭建波 孙逊 付强 曹嫦妤 李欣然 OUYANG Hui-min;ZHU Hu-quan;GUO Jian-bo;SUN Xun;FU qiang;CAO Chang-yu;LI Xin-ran(School of Life Science and Engineering,Foshan University,Foshan 528225,China)
出处 《佛山科学技术学院学报(自然科学版)》 CAS 2022年第1期10-18,共9页 Journal of Foshan University(Natural Science Edition)
关键词 生物信息学分析 非小细胞肺癌 基因芯片 差异表达基因 功能富集分析 bioinformatics analysis non-small cell lung cancer microarray differentially expressed gene functional enrichment analysis
  • 相关文献

参考文献1

二级参考文献135

  • 1Roberts RM, Smith GW, Bazer FW, Cibelli J, Seidel GE Jr, Bauman DE, Reynolds LP, Ireland JJ: Research priorities. Farm animal research in crisis. Science 2009, 324:468--469.
  • 2Hynes RO: Integrins: a family of cell surface receptors. Cell 1987, 48:549-554.
  • 3Denhardt DT, Guo X: Osteopontin: a protein with diverse functions. FASEB ) 1993, 7:1475-1482.
  • 4Senger DR, Perruzzi CA, Papadopoulos-Sergiou A, Van de Water L: Adhesive properties of osteopontin: regulation by a naturally occurring thrombincleavage in close proximity to the GRGDS cell-binding domain. Mol Bioi Ceil 1994, 5:565-574.
  • 5Butler WT, Ridall AL, McKee MD: Osteopontin. In Principles of Bone Biology.New York: Academic Press, Inc; 1996:167-181.
  • 6Sodek J, Ganss B, McKee MD: Osteopontin. Crit Rev Oral Bioi Med 2000, 11 :279- 303.
  • 7Giancotti FG, Ruoslahti E: Integrin signaling, Science 1999, 285:1028-1032.
  • 8Burghardt RC, Johnson GA, Jaeger LA, Ka H, Garlow JE, Spencer TE, Bazer FW:Integrins and extracellular matrix proteins at the maternal-fetal interface in domestic animals, Cells Tissues Organs 2002, 172:202-217.
  • 9Vogel V: Mechanotransduction involving multimodular proteins: converting force into biochemical signals, Annu Rev Biophys Biomol Struct 2006, 35:459-488.
  • 10Geiger B, Spatz JP, Bershadsky AD: Environmental sensing through focal adhesions. Nat Rev Mol Cell Bioi 2009, 10:21-33. doi: 1O.1038lnrm2593.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部