期刊文献+

SOTIMiner:一种基于集合运算的时序不变式挖掘方法 被引量:1

SOTIMiner:Mining Method of Temporal Invariants Based on Set Operations
下载PDF
导出
摘要 时序不变式反映了事件间的时序逻辑关系,被广泛应用于异常检测、系统行为理解、模型推理等技术.在实际使用中,一般通过分析软件系统的日志数据挖掘时序不变式.相比全序日志,偏序日志可为挖掘算法提供更为准确的数据来源.但是,现有的基于偏序日志的时序不变式挖掘方法存在效率较低等问题.为此,以系统执行路径为数据来源,提出了一种基于集合运算的时序不变式挖掘方法SOTIMiner,并研究了改进方案.相比现有方法,该方法不需要反向遍历日志数据,从而具有较高效率.实验显示.该方法在保证挖掘相同结果的基础上,效率平均是Synoptic挖掘工具的3.23倍. The temporal invariants reflect the temporal logic relationship between events and have been widely used in anomaly detection,system behavior understanding,model reasoning,and other techniques.Generally,mining temporal invariants through analyzing the log data of software system is in actual use.Compared with totally ordered log,partially ordered log can provide a more accurate data source for mining algorithm.However,the existing temporal invariants mining methods based on partially ordered log have some problems such as its low efficiency.For this reason,this study uses the system execution path as the data source and proposes a temporal invariants mining method SOTIMiner based on set operations and studies an improved scheme.Compared with existing methods,it does not need to traverse the log data in reverse and for the reason that it has a higher efficiency.Experiments show that the method’s average efficiency is 3.23 times of the Synoptic mining tool on the basis of guaranteeing the same result.
作者 孙德权 周竞文 周海芳 SUN De-Quan;ZHOU Jing-Wen;ZHOU Hai-Fang(College of Computer Science and Technology,National University of Defense Technology,Changsha 410073,China;Laboratory of Software Engineering for Complex Systems(National University of Defense Technology),Changsha 410073,China)
出处 《软件学报》 EI CSCD 北大核心 2022年第2期455-472,共18页 Journal of Software
基金 国家自然科学基金(61702530,61690203) 国家重点研发计划(2018YFB0204301,2017YFB1001802)。
关键词 系统执行路径 时序不变式 集合运算 SOTIMiner system execution trace temporal invariants set operations SOTIMiner
  • 相关文献

参考文献1

二级参考文献46

  • 1Coverity. Coverity Scan: 2012 Open Source Report. 2013. http://www.coverity.com/.
  • 2Yuan D, Park S, Huang P, Liu Y, Lee MM, Tang X, Zhou Y, Savage S. Be conservative: enhancing failure diagnosis with proactive logging. In: Proe. of the 10th Syrup. on Operating Systems Design and Implementation (OSDI). 2012. 293-306.
  • 3Yuan D, Park S, Zhou Y. Characterizing logging practices in open-source software. In: Proc. of the 2012 Int'l Conf. on Software Engineering. 2012. 102-112. [doi: 10.1109/ICSE.2012.6227202].
  • 4Kavulya SP, Joshi K, Di Giandomenico F, Narasimhan P. Failure Diagnosis of Complex Systems, Resilience Assessment and Evaluation of Computing Systems. Springer-Verlag, 2012. 239-261. [doi: 10.1007/978-3-642-29032-9].
  • 5Fu Q, Zhu J, Hu W, Lou JG, Ding R, Lin Q, Zhang D, Xie T. Where do developers log? An empirical study on logging practices in industry. In: Proc. of the 36th Int'l Conf. on Software Engineering. 2014.24-33. [doi: 10.1145/2591062.2591175 ].
  • 6Jiang W, Hu C, Pasupathy S, Kanevsky A, Li Z, Zhou Y. Understanding Customer Problem Troubleshooting from Storage System Logs. In: Proc. of the 7th USENIX Conf. on File and Storage Technologies (FAST). 2009.43-56.
  • 7Prewett JE. Analyzing cluster log files using logsurfer. In: Proc. of the 4th Annual Conf. on Linux Clusters. 2003.
  • 8Hellerstein JL, Ma S, Perng CS. Discovering actionable patterns in event data. IBM Systems Journal, 2002,41(3):475-493. [doi: 10. 1147/sj.413.0475].
  • 9Ma S, Hellerstein JL. Mining partially periodic event patterns with unknown periods. In: Proc. of the 17th Int'l Conf. on Data Engineering. 2001. 205-214. [doi: 10.1109/ICDE.2001.914829].
  • 10Yamanishi K, Maruyama Y. Dynamic syslog mining for network failure monitoring, In: Proc. of the 11th ACM SIGKDD Int'l Conf. on Knowledge Discovery in Data Mining. 2005.499-508. [doi: 10.1145/1081870.1081927].

共引文献36

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部