摘要
大数据政策是保障大数据高质量发展的重要指南,对大数据政策进行量化评价可以为新一轮政策精准制定提供决策支撑。基于贵州省发布的26项大数据政策文本,通过ROSTCM6提取关键词频,综合已有评价指标设定大数据政策量化评价体系,优化已有PMC指数模型建立流程,构建大数据政策PMC指数模型,量化评价其单项政策的优劣情况,根据PMC指数值绘制PMC曲面图,并针对性提出可参考的改进路径。研究结果表明:待评价大数据政策总体等级为优秀,其中P1政策为完美等级,但P5政策干预手段组合失衡,P7政策激励机制不完善,P8政策中长期规划不合理。大数据政策应注重中长期规划,加强需求侧政策工具使用,完善政策激励机制,拓宽大数据应用场景。
Big data’s policy is an important guide to ensure big data’s high-quality development.Quantitative evaluation of big data’s policy can provide decision support for a new round of accurate policy-making.Based on the 26 big data policy texts issued by Guizhou Province,the frequency of key words is extracted by ROSTCM6,the quantitative evaluation system of big data policy is set up by synthesizing the existing evaluation indicators,the establishment process of the existing PMC index model is optimized,the PMC index model of big data policy is constructed,the advantages and disadvantages of each policy are quantitatively evaluated,the PMC surface chart is drawn according to the PMC index value,and the improvement path is put forward.The results show that the overall level of big data policy to be evaluated is excellent,in which P1 policy is perfect,but the combination of P5 policy intervention is out of balance,P7 policy incentive mechanism is not perfect,and P8 policy medium-and long-term planning is unreasonable.Big data’s policy should pay attention to medium-and long-term planning,strengthen the use of demand-side policy tools,improve the policy incentive mechanism,and broaden the application scene of big data.
作者
沈俊鑫
何承洪
王晓萍
SHEN Junxin;HE Chenghong;WANG Xiaoping(Faculty of Management and Economics,Kunming University of Science and Technology,Kunming 650093,China;Innovation Management Institute,Kunming University of Science and Technology,Kunming 650093,China)
出处
《重庆理工大学学报(社会科学)》
2022年第1期144-156,共13页
Journal of Chongqing University of Technology(Social Science)
基金
国家自然科学基金项目“大数据驱动信息基础设施PPP可融资性影响因素获取及评论方法研究”(71964018)
云南工业干部学院云南产业发展研究项目“数字云南建设路径及对策研究”
广西哲学社会科学规划研究课题项目“广西大数据产业公私合作发展协同演化机制研究”(18BGL014)。