摘要
行政机关将日益依赖机器学习算法驱动的数字自动化。美国行政法可以适应这样的未来吗?不仅高度自动化的国家完全可以符合存在已久的行政法原则,而且在实现行政法的专家决策和民主问责的核心价值方面,负责任地使用机器学习算法的效果可能更优于现状。显然,算法治理有可能做出更为准确的、由数据驱动的决策。此外,由于其数学特性,算法很可能成为民主机构更为忠实的智能体(agent)。然而,即使自动化国家更为智能、具有更高问责度,它也可能存在缺乏同理心(empathy)的风险。尽管我们不应夸大人工驱动的官僚机构现在所具有的同理心程度,但是大规模转向算法治理将给行政法带来新的挑战,那就是如何确保自动化政府同时也是具有同理心的政府。
In the future,administrative agencies will rely increasingly on digital automation powered by machine learning algorithms.Can U.S.administrative law accommodate such a future?Not only might a highly automated state readily meet longstanding administrative law principles,but the responsible use of machine learning algorithms might perform even better than the status quo in terms of fulfilling administrative law's core values of expert decision-making and democratic accountability.Algorithmic governance clearly promises more accurate,data-driven decisions.Moreover,due to their mathematical properties,algorithms might well prove to be more faithful agents of democratic institutions.Yet even if an automated state were smarter and more accountable,it might risk being less empathic.Although the degree of empathy in existing human-driven bureaucracies should not be overstated,a large-scale shift to government by algorithm will pose a new challenge for administrative law:ensuring that an automated state is also an empathic one.
出处
《法治社会》
2022年第1期47-57,共11页
Law-Based Society
基金
上海市级科技重大专项“人工智能基础理论与关键核心技术”(项目编号:2021SHZDZX0100)
中央高校基本科研业务费专项资金资助
国家社科基金重大项目“大数据法制立法方案研究”(项目编号:18ZDA136)的研究成果。
关键词
自动化系统
行政法
机器学习
算法
同理心
Automated System
Administrative Law
Machine Learning
Algorithm
Empathy