期刊文献+

基于双重注意力的入侵检测系统 被引量:5

Intrusion Detection System Based on Dual Attention
下载PDF
导出
摘要 在当今互联网飞速发展的时代,人们在网络中信息交互的次数日益增多,使得网络安全显得尤为重要。文章以增强模型检测异常流量的能力为研究目的,提出一种基于注意力机制的胶囊网络模型。在特征提取阶段和动态路由阶段分别融入注意力机制,增强了模型提取关键特征的能力,提升了在入侵检测任务中的准确率。在NSL-KDD数据集和CICDS2017数据集进行实验,结果表明文章所提模型在泛化能力方面高于其他模型,在CICIDS2017的测试集上,准确率达97.56%;在NSL-KDD的测试集上,准确率可达95.88%。相较于其他传统常用的入侵检测模型,效率有显著提升。 I n the era of rapid development of the Internet,the number of people interacting with each other on the Internet is increasing,making network security particularly important.This paper aimed to enhance the model's ability to detect abnormal traffic,and proposed a capsule network model based on the attention mechanism.In the feature extraction stage and the dynamic routing stage,the attention mechanism was incorporated to enhance the model's ability to extract key features and improve the accuracy of intrusion detection tasks.Through experiments on the NSL-KDD data set and the CICDS2017 data set,experimental results show that the model in this paper is higher than other models in terms of generalization ability,and the accuracy rate on the CICIDS2017 test set has reached 97.56%.The accuracy of the NSL-KDD test set can reach 95.88%,which is significantly more efficient than other traditional intrusion detection models.
作者 刘烁 张兴兰 LIU Shuo;ZHANG Xinglan(Department of Information,Beijing University of Technology,Beijing 100124,China)
出处 《信息网络安全》 CSCD 北大核心 2022年第1期80-86,共7页 Netinfo Security
基金 国家自然科学基金[61801008]。
关键词 深度学习 入侵检测 胶囊网络 注意力机制 deep learning intrusion detection capsule network attention mechanism
  • 相关文献

参考文献3

二级参考文献15

  • 1Anil K J. Data clustering:50 years beyond K-Means[J].Pattern Recognition Letters,2010,(08):651-666.
  • 2Likas A,Vlassis M,Verbeek J. The global K-means clustering algorithm[J].Pattern Recognition,2003,(02):451-461.doi:10.1016/S0031-3203(02)00060-2.
  • 3Selim S Z,Al-Sultan K S. Analysis of global K-means,an incremental heuristic for minimum sum-of-squares clustering[J].Journal of Classification,2005,(22):287-310.
  • 4Bellman R,Dreyfus S. Applied dynamic programming[M].Princeton,New Jersey:Princeton University Press,1962.
  • 5Aloise D,Deshpande A,Hansen P. NP-hardness of euclidean sum-of-squares clustering[J].Machine Learning,2009,(02):245-248.
  • 6Mahajan M,Nimbor P,Varadarajan K. The planar K-means problem is NP-hard[J].Lecture Notes in Computer Science,2009,(5431):274-285.
  • 7Ball G,Hall D. ISODATA,a novel method of data analysis and pattern classification[Technical rept. NTIS AD 699616. ][M].California:Stanford Research Institute,1965.
  • 8WANG Cheng,LI Jiao-jiao,BAI Jun-qing. Max-Min K- means Clustering Algorithm and Application in Post-processing of Scientific Computing[A].Napoli,2011.7-9.
  • 9Pena J M,Lozano J A,Larranaga P. An empirical comparison of four initialization methods for the K-means algorithm[J].Pattern Recognition Letters,1999,(20):1027-1040.doi:10.1016/S0167-8655(99)00069-0.
  • 10Lai J Z C,Tsung-Jen H. Fast global K-means clustering using cluster membership and inequality[J].Pattern Recogni- tion,2010,(43):1954-1963.

共引文献455

同被引文献21

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部