期刊文献+

无穷:数学分析中的一些关键概念由此分崩离析

Infinity, where some of the key concepts of analysis start to fall apart
下载PDF
导出
摘要 研究实无穷和潜无穷以及它们是否相等.在构建了一个范例来证明这两个概念可以导致不同的答案之后,研究假设它们相同或不同所能够带来的影响.然后检查现代数学是如何根据需要选择性的应用这两个假设.基于讨论结果,重新审视伯克利(Berkeley)悖论和罗素(Russell)悖论,并发现前者的阴影仍然存在于现代数学体系中,而后者仅仅是一个自相矛盾的命题和谬论. This paper studies the concepts of actual and potential infinities by addressing whether or not they are different from each other. After constructing an example that shows how these concepts can and do lead to different answers, we look at the impacts of assuming either that they are the same or that they are different. Then, we turn our attention to checking how the current state of affairs of modern mathematics unconsciously applies both of these two assumptions simultaneously depending on which one is needed to produce desired conclusions. Based on the discussions of this paper, we pay a new visit to the Berkeley and Russell′s paradoxes and find that the shadow of the former paradox still presently lingers, while the latter is nothing but simply a self-contradictory proposition and a fallacy.
作者 林益 Jeffrey Yi-Lin(Department of Accounting Economics Finance Pennsylvania State System of Higher Education at Slippery Rock,Slippery Rock,PA 16057,USA)
出处 《纯粹数学与应用数学》 2021年第4期379-393,共15页 Pure and Applied Mathematics
基金 国家自然科学基金(11371292)。
关键词 实无穷 伯克利悖论 数学归纳法 潜无穷 罗素悖论 数学基础 actual infinity Berkeley paradox mathematical induction potential infinity Russell′s paradox foundations of mathematics
  • 相关文献

参考文献1

二级参考文献15

  • 1Anderson O D. Time series analysisarid forecasting[M]. London:Butterwerths, 1975
  • 2Graniner J V. Math. Mag[J]. 1988,61:220~230
  • 3Klir G J. Facets of systmes science[M]. New York:Plenum Press, 1991
  • 4Lin Y, Liu S F. Law of exponentiality and exponential curve fitting[J]. SystemsAnalysis Modelling Simulation, 2000,38 : 621~636
  • 5Lin Y,Fan T H. The fundamental structure of general systems and its relation toknowability of the physical world [J]. Kybernetes, 1997,26 : 275 ~ 285
  • 6Lin Y (guest editor). Mystery of nonlinearity and Lorenz's chaos[J]. Kybernetes,1998,26 : 605~854
  • 7Lin Y. General systems theory:a mathematical approach[M]. New York:Kluwer Academicand Plenum Publishers, 1999
  • 8Lin Y ,Ma H Y, Port R. Several epistemological problems related to the concept ofsystems[J]. Mathematical and Computer Modeling, 1990,14 : 52~57
  • 9Mickens R E. Mathematics and science[M]. Singapore:World Scientific, 1990
  • 10Honderich T. The infinite[M].London and New York:Routledge,1991

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部