摘要
研究了一类非线性抛物型方程的对称群、最优系统和对称破缺.首先给出了这个方程的七维的李对称群,利用伴随作用的不变量,建立了其李对称群的最优系统.在此基础上,构建了二维和三维最优系统,并研究了该方程的对称破缺,基于其最优系统的子代数,给出了更一般的一类抛物型方程的分类.
In this paper, symmetry groups, optimal systems and symmetry breaking of a class of nonlinear parabolic equations are studied. Firstly, the seven-dimensional Lie symmetry group of the equation is given, and the one-dimensional optimal systems of the Lie symmetry group by invariants of the adjoint representation is constructed. Based on one-dimensional optimal systems, the two-dimensional and three-dimensional optimal systems of the symmetry group are derived. Finally, symmetry breaking of the equation is also studied. In terms of the subalgebra of the optimal systems, a classification to the more general class of parabolic equations is provided.
作者
付丽敏
王丽真
闫璐
Fu Limin;Wang Lizhen;Yan Lu(School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China;Department of Mathematics,Northwest University,Xi'an 710127,China;Faculty of Science,Xijing University,Xi'an 710123,China)
出处
《纯粹数学与应用数学》
2021年第4期450-465,共16页
Pure and Applied Mathematics
基金
国家自然科学基金(11971251)。
关键词
非线性抛物型方程
对称群
微分不变量
最优系统
对称破缺
nonlinear parabolic equation
symmetry group
differential invariant
optimal system
symmetry breaking