期刊文献+

Novel PIO Algorithm with Multiple Selection Strategies for Many-Objective Optimization Problems 被引量:3

原文传递
导出
摘要 With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Existing algorithms cannot provide sufficient solution precision and guarantee the diversity and convergence of solution sets when solving practical many-objective industrial problems.Thus,this work proposes an improved many-objective pigeon-inspired optimization(ImMAPIO)algorithm with multiple selection strategies to solve many-objective optimization problems.Multiple selection strategies integrating hypervolume,knee point,and vector angles are utilized to increase selection pressure to the true Pareto Front.Thus,the accuracy,convergence,and diversity of solutions are improved.ImMAPIO is applied to the DTLZ and WFG test functions with four to fifteen objectives and compared against NSGA-III,GrEA,MOEA/D,RVEA,and many-objective Pigeon-inspired optimization algorithm.Experimental results indicate the superiority of ImMAPIO on these test functions.
出处 《Complex System Modeling and Simulation》 2021年第4期291-307,共17页 复杂系统建模与仿真(英文)
基金 This work was supported by the National Key Research and Development Program of China(No.2018YFC1604000) the National Natural Science Foundation of China(Nos.61806138,61772478,U1636220,61961160707,and 61976212) the Key R&D Program of Shanxi Province(High Technology)(No.201903D121119) the Key R&D Program of Shanxi Province(International Cooperation)(No.201903D421048) the Key R&D Program(International Science and Technology Cooperation Project)of Shanxi Province,China(No.201903D421003).
  • 相关文献

参考文献4

二级参考文献33

  • 1ZHU XiaoYong1,2 & CHENG Ming1 1 Engineering Research Center for Motion Control of MOE,School of Electrical Engineering,Southeast University,Nanjing 210096,China,2 School of Electrical and Information Engineering,Jiangsu University,Zhenjiang 212013,China.Design,analysis and control of hybrid excited doubly salient stator-permanent-magnet motor[J].Science China(Technological Sciences),2010,53(1):188-199. 被引量:16
  • 2张祥银,段海滨,余亚翔.基于微分进化的多UAV紧密编队滚动时域控制[J].中国科学:信息科学,2010,40(4):569-582. 被引量:10
  • 3Pietro S.Oliveto.Time Complexity of Evolutionary Algorithms for Combinatorial Optimization:A Decade of Results[J].International Journal of Automation and computing,2007,4(3):281-293. 被引量:5
  • 4Pachter M, D'Azzo J J, Dardan J L. Automatic formation flight control. J Guid Control Dynam, 1992, 17:838-857.
  • 5Pachter M, D'Szzo J J, Proud A W. Tight formation flight control. J Guid Control Dynam, 2001, 24:246-254.
  • 6Proud W, Pachter M, D'Azzo J. Close formation flight control. In: Proceedings of AIAA Guidance, Navigation and Control Conference. Portland, 1999. 1231-1246.
  • 7Buzogany L E, Pachter M, D'Azzo J J. Automated control of aircraft in formation flight. In: Proceedings of AIAA Guidance, Navigation and Control Conference. Monterey, 1993. 1349-1370.
  • 8Singh S N, Pachter M. Adaptive feedback linearization nonlinear close formation control of UAVs. In: Proceedings of the American Control Conference. Chicago, 2000. 854-858.
  • 9Binetti P, Ariyur K B, Krstic M, et al. Formation flight optimization using extremum seeking feedback. J Guid Control Dynam, 2003, 26: 132-142.
  • 10左斌,胡云安.利用极值搜索方法优化无人机紧密编队飞行.见:第五届全球智能控制与自动化大会会议论文集(4).杭州:IEEE,2004.3302-3305.

共引文献121

同被引文献7

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部