摘要
提出一个基于多通道压缩双线性池化的模型,对文档中的候选情感-原因句子对进行排序。该模型利用图注意力网络提取包含位置信息的情感特定化表示和原因特定化表示,通过局部关系学习模块,进一步学习情感与原因句子之间的局部关系表示,再使用多通道压缩双线性池化来融合学习情感-原因候选句子对表示。最后,对候选句子对进行排序。实验结果表明,与最新模型相比,所提模型在多方面表现更优。
The authors propose a model based on multichannel compact bilinear pooling to rank pair candidates in a document.The proposed model firstly extracts the emotion-specific and cause-specific representation containing position information via graph attention network,then further learns the local relation representation between emotion clause and cause clause through the local relation-aware module.Finally,these representations are fused via multichannel compact bilinear pooling to learn the emotion-cause pairs representation for effective ranking.Experimental results show that the proposed approach achieves the best performance among all compared approaches on the task.
作者
黄晋
许实
蔡而聪
吴志杰
郭美美
朱佳
HUANG Jin;XU Shi;CAI Ercong;WU Zhijie;GUO Meimei;ZHU Jia(School of Computer Science,South China Normal University,Guangzhou 510631;The Key Laboratory of Intelligent Education Technology and Application of Zhejiang Normal University,Jinhua 321004)
出处
《北京大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2022年第1期21-28,共8页
Acta Scientiarum Naturalium Universitatis Pekinensis
基金
国家自然科学基金(62077015)资助。
关键词
情感分析
情感-原因句子对提取
图注意力网络
局部关系提取
多通道压缩双线性池化
sentiment analysis
emotion-cause pair extraction
graph attention network
local relation-aware module
multichannel compact bilinear pooling