期刊文献+

基于51与K66双芯片的智能小车控制系统 被引量:2

Intelligent Car Control System Based on 51 and K66 Dual Chips
下载PDF
导出
摘要 本文提出一种新的智能小车主动及被动控制手段,采用STC89C51RC与K66双芯片实现对智能小车的控制.运用蓝牙通信技术实现通过手机端APP控制小车进行基本动作,同时利用超声波测距技术实现小车自动避障.此外,还加入了红外探测传感器以实现小车的自动循迹,结合低功耗的MT9V032摄像头,利用图像识别技术实现了信标灯寻的.实验测试结果表明该移动小车在光照条件适当的情况下具备良好的循迹性能,在小车速度为20 cm/s时避障准确率达到99%,能够以3.1 m/s的稳定速度识别到直径为7.85 m辐射范围内的信标灯. In this study,an active and passive control method of intelligent cars is proposed.The STC89C51RC and K66 dual chips are used to control intelligent cars.With the Bluetooth communication technology,the car is controlled on a mobile phone APP.Meanwhile,automatic obstacle avoidance of the car is achieved with the ultrasonic ranging technology.In addition,an infrared detection sensor is added to facilitate the automatic tracking of the car.Beacon light homing is accomplished with the image recognition technology and the low-power MT9V032 camera.The experimental results show that the mobile car delivers a good tracking performance under proper lighting conditions.When the speed of the car is 20 cm/s,the obstacle avoidance accuracy reaches 99%and beacon lights within 7.85 m away from the car can be identified at a stable speed of 3.1 m/s.
作者 张荣辉 黄敏 江华丽 胡香琳 ZHANG Rong-Hui;HUANG Min;JIANG Hua-Li;HU Xiang-Lin(Faculty of Optoelectronic Information,Minnan Science and Technology University,Quanzhou 362332,China;Laboratory of Advanced Sensing Technology,Fujian Jiangxia University,Fuzhou 350108,China;School of Opto-electronic and Communication Engineering,Xiamen University of Technology,Xiamen 361024,China)
出处 《计算机系统应用》 2022年第2期96-101,共6页 Computer Systems & Applications
基金 福建省教育厅中青年教师教育科研项目(JAT200983) 福建江夏学院科研人才培育项目(JXZ2019012) 福建省中青年教师教育科研项目(JAT190472) 福建江夏学院校级教改(J2019C0009)。
关键词 小车 超声波 循迹 摄像头 图像识别 smart car ultrasonic tracking camera image recognition technology
  • 相关文献

参考文献13

二级参考文献79

  • 1张和生,宋明耀.提高超声测距精度的设计[J].电子产品世界,2004,11(07A):87-89. 被引量:26
  • 2滕艳菲,陈尚松.超声波测距精度的研究[J].国外电子测量技术,2006,25(2):23-25. 被引量:33
  • 3李飞,陈峰.基于BP神经网络的超声测距误差补偿[J].传感器与微系统,2006,25(6):31-33. 被引量:2
  • 4罗德安,廖丽琼.地面激光扫描仪的精度影响因素分析[J].铁道勘察,2007,33(4):5-8. 被引量:38
  • 5GONZALEZ R C.数字图像处理(MATLAB版)[M].阮秋琦等译.北京:电子工业出版社,2005.
  • 6尚林勇,项琳琳.自动往返电动小汽车的设计[J].成宁师专学报,2002,22(3):40-43.
  • 7Jung K,Kim K I,Jain A K.Text information extraction in images and video:a survey[J].Pattern Recognition,2004,37(5):977-997.
  • 8Pan Y F,Hou X,Liu C L.Text localization in natural scene images based on conditional random field[C]//Proceedings of IEEE 10th International Conference on Document Analysis and Recognition(ICDAR),2009:6-10.
  • 9Shivakumara P,Phan T Q,Tan C L.A Laplacian approach to multi-oriented text detection in video[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(2):412-419.
  • 10Lucas S M.ICDAR 2005 text locating competition results[C]//Proceedings of the International Conference on Document Analysis and Recognition(ICDAR),2005:80-84.

共引文献73

同被引文献17

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部