期刊文献+

基于明暗通道循环GAN网络的单幅图像去雾 被引量:2

Single Image Defogging Based on Bright and Dark Channel CycleGAN Network
下载PDF
导出
摘要 针对现有的深度学习去雾算法参数多,训练时间长,无法应用到实时计算机视觉系统等问题,本文提出了一种基于明暗通道的循环GAN网络(bright and dark channel CycleGAN network,BDCCN).BDCCN以CycleGAN为基础,采用固定参数和训练参数相结合方式,基于明暗通道先验理论,改进循环感知损失,实现图像去雾.实验结果表明,本文算法计算量小,收敛快,在合成数据集和真实数据集上均表现优异. To address the problems of the existing deep-learning defogging algorithm such as the various parameters,long training time,and inability to apply to real-time computer vision systems,this study proposes a bright and dark channel CycleGAN network(BDCCN).BDCCN,based on the CycleGAN,improves the cyclic perceptual loss and achieves image defogging by combining the fixed parameters with training parameters and drawing on the priori theory of bright and dark channels.The experimental results show that the algorithm proposed in this paper,with a small amount of calculation and a fast convergence rate,performs well on both synthetic data sets and real data sets.
作者 陈平 CHEN Ping(Department of Electronic Information,Huishang Vocational College,Hefei 230022,China)
出处 《计算机系统应用》 2022年第2期191-199,共9页 Computer Systems & Applications
基金 安徽省自然科学重点项目(KJ2019A1242)。
关键词 图像去雾 循环GAN 明暗通道先验理论 感知损失 image defogging CycleGAN priori theory of bright and dark channels perceptual loss
  • 相关文献

参考文献2

二级参考文献79

  • 1蒙军,索忠乐,陈洪,时新华.一种改进的红外图像增强算法[J].解放军理工大学学报(自然科学版),2004,5(5):5-9. 被引量:9
  • 2芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 3孙玉宝,肖亮,韦志辉,吴慧中.基于偏微分方程的户外图像去雾方法[J].系统仿真学报,2007,19(16):3739-3744. 被引量:34
  • 4Rafael C Gonzalez,Richard E.Woods Digital Image Processing[M].北京:电子工业出版社,2003.
  • 5Gonzalez R C, Woods R E. Digital Image Processing. Read- ing, MA: Addison-Wesley, 1992.
  • 6Nayar S K, Narasimhan S G. Vision in bad weather. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999, 2:820-827.
  • 7Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254.
  • 8Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern AnMysis and Machine Intelligence, 2003, 25(6): 713-724.
  • 9Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition (CVPR 2001). Kauai: IEEE, 2001, 2: II- 186-II-193.
  • 10Hauti6re N, Tarel J P, Lavenant J, Aubert D. Automatic fog detection and estimation of visibility distance throughuse of an onboard camera. Machine Vision and Applications 2006, 17(1): 8-20.

共引文献233

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部