期刊文献+

基于XGBoost的低渗油田储层粒度预测 被引量:4

Prediction of Reservoir Grain Size in Low Permeability Oilfield Based on XGBoost
下载PDF
导出
摘要 针对低渗油田储层粒度预测问题,本文提出利用机器学习中的极致剃度提升树(extreme gradient boosting,XGBoost)来对低渗油田储层粒度进行预测的方案.首先,根据问题构建合适的XGBoost模型,然后根据已有的岩心储层粒度特征值与其余测井信息的关系,选取适用于粒度预测的测井曲线建立样本库,最后利用样本库数据对建立的XGBoost模型进行训练,训练后的模型即可预测研究区域未知的储层粒度特征.结果表明,本文所设计的XGBoost模型对低渗油田的储层粒度预测方案在计算效率、预测准确率等方面均优于BP神经网络. To address the prediction problems of reservoir grain sizes in low permeability oilfields,this study proposes a scheme for predicting reservoir grain sizes in low permeability oilfields with the extreme gradient boosting(XGBoost)in machine learning.First,a proper XGBoost model is built in consideration of the problems.Then,well logging curves suitable for grain size prediction are selected to create a sample database according to the established relationships of the characteristic values of the core reservoir grain size with other logging information.Finally,sample database data are employed to train the newly built XGBoost model.The trained model can predict unknown reservoir grain size characteristics in a study area.The results show that the XGBoost model designed in this study is superior to the back propagation(BP)neural network in calculation efficiency and prediction accuracy of reservoir grain sizes in low permeability oilfields.
作者 李建平 张小庆 李莹 LI Jian-Ping;ZHANG Xiao-Qing;LI Ying(School of Computer&Information Technology,Northeast Petroleum University,Daqing 163318,China;Storage Sales Branch,Daqing Oilfield Co.Ltd.,Daqing 163453,China)
出处 《计算机系统应用》 2022年第2期241-245,共5页 Computer Systems & Applications
关键词 机器学习 神经网络 XGBoost 储层粒度 machine learning neural network XGBoost reservoir grain size
  • 相关文献

参考文献10

二级参考文献85

共引文献65

同被引文献42

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部