摘要
为解决当前负荷预测模型中聚类中心随机性大、聚类结果质量差、稳定性差的问题,将传统的模糊c均值聚类和局部密度法结合,提出基于改进模糊c均值聚类中心优化算法的负荷分类方法。首先,对收集得的负荷数据进行归一化处理,利用局部密度公式选择初始聚类中心;接着,对日负荷聚类,以某电网典型负荷作为算例验证该算法。结果表明,该算法有较好的鲁棒性,提高了负荷数据聚类的有效性。
In order to solve the problems of high randomness,poor quality and poor stability of the clustering center in the current load forecasting model,the load classification method is based on improved fuzzy C-means clustering center optimization algorithm,proposed by combining the traditional fuzzy C-means clustering method with local density method.Firstly,the collected load data are normalized,and the initial cluster center is selected by local density formula.Then,a typical user load of a power grid is taken as an example to verify the proposed algorithm.The results show that the proposed algorithm has good robustness and improves the validity of load data clustering.
出处
《工业控制计算机》
2022年第1期106-108,共3页
Industrial Control Computer
关键词
局部密度法
中心优化
隶属度矩阵
local density method
central optimization
membership matrix