期刊文献+

基于改进模糊c均值聚类中心优化算法的负荷分类方法

Load Classification Method Based on Improved Fuzzy C-means Clustering Center Optimization Algorithm
下载PDF
导出
摘要 为解决当前负荷预测模型中聚类中心随机性大、聚类结果质量差、稳定性差的问题,将传统的模糊c均值聚类和局部密度法结合,提出基于改进模糊c均值聚类中心优化算法的负荷分类方法。首先,对收集得的负荷数据进行归一化处理,利用局部密度公式选择初始聚类中心;接着,对日负荷聚类,以某电网典型负荷作为算例验证该算法。结果表明,该算法有较好的鲁棒性,提高了负荷数据聚类的有效性。 In order to solve the problems of high randomness,poor quality and poor stability of the clustering center in the current load forecasting model,the load classification method is based on improved fuzzy C-means clustering center optimization algorithm,proposed by combining the traditional fuzzy C-means clustering method with local density method.Firstly,the collected load data are normalized,and the initial cluster center is selected by local density formula.Then,a typical user load of a power grid is taken as an example to verify the proposed algorithm.The results show that the proposed algorithm has good robustness and improves the validity of load data clustering.
出处 《工业控制计算机》 2022年第1期106-108,共3页 Industrial Control Computer
关键词 局部密度法 中心优化 隶属度矩阵 local density method central optimization membership matrix
  • 相关文献

参考文献10

二级参考文献137

共引文献265

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部