期刊文献+

基于传统图像处理算法的车道线检测 被引量:7

Lane Detection Based on Traditional Image Processing Algorithm
下载PDF
导出
摘要 在现代交通驾驶领域中,随着自动驾驶技术的迅速发展,车道线检测也变得至关重要。基于此,文章提出了一种基于传统图像处理算法的车道线检测方法,该方法利用了传统图像处理算法中的滤波算法、Canny边缘检测算法和Hough直线检测算法作为基本算法模型,采用只对ROI中进行检测的措施来满足对于前方车道线的准确检测。在检测中,使用了OpenCV开源图像处理库来对进行上述方法进行实现。此方法可极大减少对前方车道线检测的外界干扰,在汽车实验场中利用该方法,可以比较准确地检测出车辆前方的车道线,并且该算法在一般机器上能够实现实时级的车道线检测。但是在实验过程中,也发现当前方的障碍物较多的时候,所采用的算法不能很好地检测出车道线,对外界的抗干扰能力比较差。 With the rapid development of autonomous driving technology,lane line detection has also become critical.Based on this,a lane line detection method based on traditional image processing algorithms is proposed.This method uses the filtering algorithm,Canny edge detection algorithm and Hough line detection algorithm in the traditional image processing algorithm as the basic algorithm model.The detection measures are taken to satisfy the accurate detection of the lane line ahead.In the detection,the OpenCV open source image processing library is used to implement the above method.This method can greatly reduce the external interference to the detection of the front lane line.Using this method in the automobile test field,the lane line in front of the vehicle can be detected more accurately,and the algorithm can achieve real-time lanes on general machines.Line detection.However,during the experiment,it was also found that when there were more obstacles in the front,the algorithm used could not detect the lane line well,and the anti-interference ability to the outside world was relatively poor.
作者 张勇 杜学峰 高越 杨伟 ZHANG Yong;DU Xuefeng;GAO Yue;YANG Wei(Chang’an University,College of Automobile,Shaanxi Xi'an 710064)
出处 《汽车实用技术》 2022年第2期20-23,共4页 Automobile Applied Technology
关键词 自动驾驶 图像处理 霍夫变换 直线检测 Autopilot Image processing Hough transform Line detection
  • 相关文献

参考文献3

二级参考文献29

  • 1王植,贺赛先.一种基于Canny理论的自适应边缘检测方法[J].中国图象图形学报(A辑),2004,9(8):957-962. 被引量:214
  • 2顾柏园,王荣本,余天洪,郭烈.基于视觉的前方车辆探测技术研究方法综述[J].公路交通科技,2005,22(10):114-119. 被引量:14
  • 3郭烈,王荣本,顾柏园,余天洪.世界智能车辆行人检测技术综述[J].公路交通科技,2005,22(11):133-137. 被引量:18
  • 4NOOKALA M,ESTOCHEN B.Minnesota,USA Intelligent Vehicle Initiative[C] // The Proceedings of IEEE Intelligent Vehicles Symposium.2002:22-27.
  • 5BROGGI A.智能车辆-智能交通系统的关键技术[M].北京:人民交通出版社,2002:33-36.
  • 6Demo 2002 Showcases French Accomplishments in Smart Car Technology[R].Ⅳsource.net,Jul.y-September,2002.
  • 7SUN Z,BEBIS G,MILLER R.On-road vehicle detection using optical sensors:A review[C] // The Proceedings of IEEE Conference on Intelligent Transportation Systems.2004:585-590.
  • 8BELLUTTA P,MANDUCHI R,MATTHIES L,et al.Terrain Perception for DEMO Ⅲ[C] //The Proceedings of IEEE Intelligent Vehicles Symposium.2000:326-331.
  • 9GAVRILA DM,GEIBEL J.Shape-Based Pedestrian Detection and Tracking[C] //The Proceedings of IEEE Intelligent Vehicles Symposium.2002:8-14.
  • 10BERTOZZI M,BROGGI A,LASAGNI A.Infrared Stereo Vision-Based Pedestrian Detection[C] //The Proceedings of IEEE Intelligent Vehicles Symposium.2005:24-29.

共引文献84

同被引文献37

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部