摘要
为了提高变压器故障诊断的准确率,在改良三比值法的基础上,采用麻雀搜索算法优化概率神经网络构建一种新型变压器故障诊断网络模型,并设计相应的故障诊断方法。分析表明,与基于概率神经网络的变压器故障诊断方法相比,基于该网络模型的诊断方法提高了变压器故障识别与故障分类的准确率,在电力变压器的故障诊断中具有一定的实际工程意义。
In order to improve the accuracy of transformer fault diagnosis,based on the improved three ratio method,the sparrow search algorithm is used to optimize the probabilistic neural network,a new transformer fault diagnosis network model is established,and the corresponding fault diagnosis method is designed.The analysis shows that compared with the transformer fault diagnosis method based on probabilistic neural network,the diagnosis method based on the network model improves the accuracy of transformer fault identification and fault classification,and has certain engineering practical significance in the fault diagnosis of power transformer.
作者
张鑫
王衡
卫永鹏
王胜利
苏益辉
ZHANG Xin;WANG Heng;WEI Yongpeng;WANG Shengli;SU Yihui(State Grid Gansu Electric Power Company Maintenance Company;College of Electrical and Information Engineering, Lanzhou University of Technology, Gansu Lanzhou 730050,China)
出处
《工业仪表与自动化装置》
2022年第1期86-90,共5页
Industrial Instrumentation & Automation
关键词
变压器
故障诊断
麻雀搜索算法
概率神经网络
transformer
fault diagnosis
sparrow search algorithm
probabilistic neural network