摘要
针对动态交通流中智能驾驶车载传感器感知盲区补充的问题,构建了用于分析传感器感知盲区的动态交通流感知盲区模型,以该模型为基础提出了一种基于熵权法的传感器共享节点选择策略,用于选择最佳的共享车辆节点来进行盲区补充。实验结果表明,动态交通流感知盲区模型对实际交通场景具有良好的表征,基于熵权法的传感器共享节点选择策略选出的节点能有效地补充车辆感知盲区,扩大了车辆的感知范围,提高了智能驾驶汽车的安全性。
Aiming at the problem of supplementing the blind spots of intelligent driving vehicle sensors in dynamic traffic flow, a perception blind spot model in dynamic traffic flow is constructed to analyze sensor blind spots, and a sensor sharing node selection strategy based on the entropy weight method is proposed to select suitable vehicle nodes for blind spots supplement. Experimental results show that the dynamic traffic flow sensing blind spots model has a good representation of actual traffic scenarios. The nodes selected by the sensor sharing node selection strategy based on the entropy weight method can effectively supplement the vehicle sensing blind spots, expand the vehicle’s perception range, and improve driving safety of intelligent driving vehicles.
作者
罗明懿
陈倩
曹赛男
李春海
李晓欢
周胜源
LUO Mingyi;CHEN Qian;CAO Sainan;LI Chunhai;LI Xiaohuan;ZHOU Shengyuan(School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China;Liuzhou Wuling Automobile Industry Co.Ltd,Liuzhou 545007,China)
出处
《桂林电子科技大学学报》
2021年第5期356-361,共6页
Journal of Guilin University of Electronic Technology
基金
国家自然科学基金(61762030)
广西自然科学基金(2019GXNSFFA245007)
广西创新驱动发展专项(桂科AA17204002,桂科AA17204009,桂科AA18242021)
广西重点研发计划(桂科AB19110050)
中央引导地方科技发展专项(ZY19183005)。
关键词
智能驾驶
盲区补充
传感器共享
节点选择
熵权法
intelligent driving
blind spots supplement
sensor sharing
node selection
entropy weight method