期刊文献+

面向智能驾驶感知盲区补充的传感器共享策略

Sensor sharing strategy for blind spots supplement in intelligent driving
下载PDF
导出
摘要 针对动态交通流中智能驾驶车载传感器感知盲区补充的问题,构建了用于分析传感器感知盲区的动态交通流感知盲区模型,以该模型为基础提出了一种基于熵权法的传感器共享节点选择策略,用于选择最佳的共享车辆节点来进行盲区补充。实验结果表明,动态交通流感知盲区模型对实际交通场景具有良好的表征,基于熵权法的传感器共享节点选择策略选出的节点能有效地补充车辆感知盲区,扩大了车辆的感知范围,提高了智能驾驶汽车的安全性。 Aiming at the problem of supplementing the blind spots of intelligent driving vehicle sensors in dynamic traffic flow, a perception blind spot model in dynamic traffic flow is constructed to analyze sensor blind spots, and a sensor sharing node selection strategy based on the entropy weight method is proposed to select suitable vehicle nodes for blind spots supplement. Experimental results show that the dynamic traffic flow sensing blind spots model has a good representation of actual traffic scenarios. The nodes selected by the sensor sharing node selection strategy based on the entropy weight method can effectively supplement the vehicle sensing blind spots, expand the vehicle’s perception range, and improve driving safety of intelligent driving vehicles.
作者 罗明懿 陈倩 曹赛男 李春海 李晓欢 周胜源 LUO Mingyi;CHEN Qian;CAO Sainan;LI Chunhai;LI Xiaohuan;ZHOU Shengyuan(School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China;Liuzhou Wuling Automobile Industry Co.Ltd,Liuzhou 545007,China)
出处 《桂林电子科技大学学报》 2021年第5期356-361,共6页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61762030) 广西自然科学基金(2019GXNSFFA245007) 广西创新驱动发展专项(桂科AA17204002,桂科AA17204009,桂科AA18242021) 广西重点研发计划(桂科AB19110050) 中央引导地方科技发展专项(ZY19183005)。
关键词 智能驾驶 盲区补充 传感器共享 节点选择 熵权法 intelligent driving blind spots supplement sensor sharing node selection entropy weight method
  • 相关文献

参考文献2

二级参考文献20

  • 1李才伟,吴金平.岩石中结晶颗粒竞争性生长的随机元胞自动机模拟[J].地球科学(中国地质大学学报),1996,21(6):593-596. 被引量:8
  • 2HUANG S, REN W, CHAN S C. Design and performance evaluation of mixed manual and automated control traffic[J]. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 2000, 30(6): 661-673.
  • 3BOSE A, IOANNOU P. Analysis of traffic flow with mixed manual and semi-automated vehicles[C]// American Control Conference, 1999. Proceedings of the 1999. IEEE, 1999, 3: 2173-2177.
  • 4BOSE A, IOANNOU P. Mixed manual/semi-automated traffic: a macroscopic analysis[J]. Transportation Research Part C: Emerging Technologies, 2003, 11(6): 439-462.
  • 5GIPPS P G. A behavioural car-following model for computer simulation[J]. Transportation Research Part B: Methodological, 1981, 15(2): 105-111.
  • 6CIUFFO B, PUNZO V, MONTANINO M. Thirty years of Gipps" cal-following model[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012, 2315(1): 89-99.
  • 7PANWAI S, DIA H. Comparative evaluation of microscopic car-tbllowing behavior[J]. Intelligent Transportation Systems, IEEE Transactions on, 2005, 6 (3): 314-325.
  • 8RANJITKAR P, NAKATSUJI T, ASANO M. Performance evaluation of microscopic traffic flow models with test track data[J]. Transportation Research Record: Journal of the Transportation Research Board, 2004, 1876(1): 90-100.
  • 9BERNSDORF J, DURST F, SCH)FER M. Comparison of cellular automata and finite volume techniques for simulation of incompressible flows in complex geometries[J]. International Journal for Numerical Methods in Fluids, 1999, 29(3): 251-264.
  • 10NAGEL K, SCHRECKENBERG M. A cellular automaton model for freeway traffic[J]. Journal de Physique I, 1992, 2(12): 2221-2229.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部