摘要
目的对厚度为12 mm的HG785D高强钢进行复合焊接,获取最佳焊接工艺参数,建立适用于激光-MIG(Metal Inert Gas Welding)复合焊接的热源模型。方法采用激光-MIG复合焊接方法进行焊接试验,建立适用于HG785D高强钢激光-MIG复合焊接的"高斯锥形体+均匀锥形体+高斯柱形体"复合热源模型,描述复合热源的能量分布,运用ANSYS有限元分析软件,对HG785D高强钢激光-MIG复合焊接温度场进行数值模拟。结果在最佳工艺参数下,焊缝的成形性良好,未出现裂纹、气孔和未焊透等缺陷;模拟与试验获得的焊接接头宏观形貌及特征点温度循环曲线规律相吻合。结论获得了适合12 mm厚HG785D高强钢的最佳焊接工艺参数,复合热源模型适用于高强钢激光-MIG复合焊接温度场模拟。
The work aims to weld HG785D high strength steel with a thickness of 12 mm by hybrid welding and obtain the optimal welding process parameters, so as to establish the heat source model suitable for laser-MIG(Metal Inert Gas Welding)hybrid welding. The laser-MIG hybrid welding method was used for welding experiment, and a Gaussian cone + uniform cone +Gaussian cylindrical hybrid heat source model suitable for laser-MIG hybrid welding of HG785D high strength steel was established to describe the energy distribution of the hybrid heat source. The temperature field of laser-MIG hybrid welding of HG785D high strength steel was simulated by ANSYS finite element analysis software. Under the optimal process parameters,the weld was well formed without any cracks, pores and incomplete penetration. The macroscopic morphology of the hybrid welded joint and the temperature cycle curve of the characteristic point obtained by experiment and simulation were consistent.The optimal welding process parameters suitable for 12 mm thick HG785D high strength steel are obtained, and the hybrid heat source model is suitable for the temperature field simulation of laser-MIG hybrid welding of high strength steel.
作者
周勇
张成文
张国军
付甲
牛楠
刁路青
王洪铎
ZHOU Yong;ZHANG Cheng-wen;ZHANG Guo-jun;FU Jia;NIU Nan;DIAO Lu-qing;WANG Hong-duo(School of Materials Science and Engineering,Xi'an Shiyou University,Xi'an 710065,China;Liaohe Oilfield Construction Company Limited,Panjin 124120,China)
出处
《精密成形工程》
北大核心
2022年第1期153-158,共6页
Journal of Netshape Forming Engineering
基金
国家自然科学基金(51905427)
西安石油大学“材料科学与工程”省级优势学科资助项目(YS37020203)
西安石油大学研究生创新与实践能力培养计划资助项目(YCS20212113)。
关键词
激光-MIG复合焊接
高强钢
数值模拟
温度场
laser-MIG hybrid welding
high strength steel
numerical simulation
temperature field