期刊文献+

基于双向长短期记忆循环神经网络的网络流量预测 被引量:8

NETWORK TRAFFIC PREDICTION BASED ON BILSTM RECURRENT NEURAL NETWORK
下载PDF
导出
摘要 针对长短期记忆循环神经网络在对时间序列进行学习时存在早期特征记忆效果差、难以充分挖掘整个网络流量特征等问题,提出一种基于双向长短期记忆循环神经网络的网络流量预测方法,以提高网络流量预测的准确性。对网络流量序列进行双向学习,避免单向学习导致较早学习部分特征提取和记忆效果差的问题。同时双向学习可以充分挖掘网络流量天与天之间双向的特征,完整地学习到网络流量的整体特征。仿真实验结果表明,改进后的方法相比原方法具有更好的预测效果。 For the LSTM recurrent neural network,when learning the time series,the early feature memory effect is poor,and it is difficult to fully exploit the characteristics of the entire network traffic.This paper proposes a network traffic prediction method based on BiLSTM recurrent neural network to improve the accuracy of network traffic prediction.The method performed two-way learning on the network traffic sequence,avoiding the problem that the one-way learning leads to poor feature extraction and memory effect in the early learning.Two-way learning could fully exploit the two-way characteristics of network traffic between day and day,and fully learn the overall characteristics of network traffic.The simulation results show that the improved method has better prediction effect than the original method.
作者 杜秀丽 范志宇 吕亚娜 邱少明 Du Xiuli;Fan Zhiyu;LüYana;Qiu Shaoming(Key Laboratory of Communication and Network,Dalian University,Dalian 116622,Liaoning,China;College of Information Engineering,Dalian University,Dalian 116622,Liaoning,China)
出处 《计算机应用与软件》 北大核心 2022年第2期144-149,156,共7页 Computer Applications and Software
基金 辽宁“百千万人才工程”基金项目(2018921080)。
关键词 网络流量预测 自相似性 BiLSTM LSTM Network traffic prediction Self similarity BiLSTM LSTM
  • 相关文献

参考文献5

二级参考文献5

  • 1FORTZ B, THORUP M. Internet Traffic Engineering by Optimizing OSPF Weights [ C ]. Proc. of IEEE Infocom, Israel ,2000-03:519-528.
  • 2PHAM H, LAVERY B. A New Scalable, Hybrid Approach for IP Traffic Engineering Without Full Mesh Overlaying [C]. Proc. of ICT, Papeete, French Polynesia, 2003 ( 3 ) : 267 -272.
  • 3PASHARDES S, CHRISTOFIDER C. Statistical Analysis of Wind Speed and Direction in Cyprus [ J ]. Solar Energy,1995,55(5) :405-414.
  • 4沃尔特·恩德斯.在时间序列分析[M].杜江,谢志超,译.北京:高等教育出版社,2006.
  • 5FENG X, SCHULTEIS J. Identification of High Noise Time Series Signals Using Hybrid ARMA Modeling and Neural Network Approach[J]. IEEE International Conference on Neural Networks, 1993 (3) : 1 780-1 785.

共引文献66

同被引文献63

引证文献8

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部