期刊文献+

基于YOLOv5的姿态交互球类陪练机器人 被引量:5

An interactive ball training partner robot based on YOLOv5
下载PDF
导出
摘要 针对当下球类陪练机器人人机交互能力不足的问题,提出一种基于树莓派和YOLOv5目标检测算法的新型人机交互模式,使机器人实现前进、后退、左移、右移、抛球、踢球6种不同的动作;通过对在3种不同环境(室内、室外晴天、室外阴天)下搜集的人体姿态数据集进行标定、训练后,得到6种姿态在3种环境中测试集上的识别准确率分别为:室内96.33%、室外晴天95%、室外阴天94.3%。相比基于特征匹配和其他利用手势等小目标检测的算法,基于该算法的机器人具有更高的检测速度和准确性,使机器人更加智能化。 In order to solve the problem of insufficient human-computer interaction ability of ball training partner robots,a new human-computer interaction mode based on Raspberry Pi and YOLOv5 algorithm was proposed,which enabled the robot to realize six different actions:forward,backward,left,right,throwing the ball,and kicking the ball.After calibrating and training the data sets collected in three different environments(indoor,outdoor sunny day and outdoor cloudy day),the recognition accuracy of the six poses in the test set under three different environments is 96.33%indoor,95%outdoor sunny day,and 94.3%outdoor cloudy day,respectively.Compared with other algorithms based on feature matching and small target detection using gestures,the robot has higher detection speed and accuracy,which makes the robot more intelligent.
作者 曾杨吉 刘自红 蔡勇 郭星辰 莫金龙 Zeng Yangji;Liu Zihong;Cai Yong;Guo Xingchen;Mo Jinlong(School of Manufacturing Science and Engineering,Southwest University of Science and Technology,Mianyang 621000,China)
出处 《电子技术应用》 2022年第1期76-79,共4页 Application of Electronic Technique
基金 西南科技大学博士基金(20zx7148) 西南科技大学研究生创新基金(20ycx0066)。
关键词 YOLOv5算法 姿态识别 球类陪练机器人 树莓派 STM32单片机 YOLOv5 algorithm posture recognition ball training partner robot Raspberry Pi STM32 MCU
  • 相关文献

参考文献9

二级参考文献55

  • 1关慧贞,高英明.一种手控拾发球机器人的设计[J].机床与液压,2004,32(12):141-143. 被引量:6
  • 2戴建生,丁希仑,邹慧君.变胞原理和变胞机构类型[J].机械工程学报,2005,41(6):7-12. 被引量:95
  • 3金国光,高峰,丁希仑.变胞机构的分类及其构态分析[J].机械科学与技术,2005,24(7):764-767. 被引量:28
  • 4邓宏光,孙大刚,游思坤,王海滨.剪叉式升降平台建模及关键参数研究[J].机电工程技术,2005,34(7):20-22. 被引量:33
  • 5JANG I J, PARK W B. Signal processing of the acceler- ometer for gesture awareness on handheld devices[C]. In Proceedings of the IEEE International Workshop on Robot and Human Interactive Communication, 2003:139-144.
  • 6FERSCJA A, RESMRITA S. Gestural interaction in the pervasive computing landscape[J].Elektrotechnik & Informa- tionstechnik, 2007,124(1):17-25.
  • 7CHEN Q, PETRIU E M, GEORGANAS N D. 3D hand tracking and motion analysis with a combination approach of statistical and syntactic analysis. HAVE 2007: Proc.IEEE Int. Workshop on Haptic, Audio and Visual Environ- ments and Their Applications, 2007:56-61.
  • 8朗道,栗费席兹.理论物理学教程:第1卷,力学[M].5版.李俊峰,译.北京:高等教育出版社,2007:108-136.
  • 9NASER E S,NASSAR S, NOURELDIN A.Wave denoising for IMU alignment[J].~EEE A&E System Magazine.2004,19 (10):32-39.
  • 10MADGWICK S 0 H.An efficient orientation filter for iner- tial and inertial/magnetic sensor arrays. April, 2010.

共引文献162

同被引文献51

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部