期刊文献+

基于深度学习的稀疏矩阵向量乘运算性能预测模型 被引量:3

Computing Performance Prediction Model for Sparse Matrix Vector Multiplication Based on Deep Learning
下载PDF
导出
摘要 稀疏矩阵向量乘(SpMV)是求解稀疏线性方程组的计算核心,被广泛应用在经济学模型、信号处理等科学计算和工程应用中,对于SpMV及其调优技术的研究有助于提升解决相关领域问题的运算效率。传统SpMV自动调优方法基于硬件平台的体系结构参数设置来提升SpMV性能,但巨大的参数设置量导致搜索空间变大且自动调优耗时大幅增加。采用深度学习技术,基于卷积神经网络,构建由双通道稀疏矩阵特征融合以及稀疏矩阵特征与体系结构特征融合组成的SpMV运算性能预测模型,实现快速自动调优。为提高SpMV运算时间的预测精度,选取特征数据并利用箱形图统计SpMV时间信息,同时在佛罗里达稀疏矩阵数据集上进行实验设计与验证,结果表明,该模型的SpMV运算时间预测准确率达到80%以上,并且具有较强的泛化能力。 Sparse Matrix Vector Multiplication(SpMV)is key to solving sparse linear equations.It is widely used in economic modeling,signal processing and other scientific and engineering tasks.The research on SpMV and its tuning technology can improve the computational efficiency of solving problems in related fields.Traditional SpMV automatic tuning methods improve the performance of SpMV based on the architecture parameter settings of the hardware platform,but the huge amount of parameter settings leads to a larger search space and a significant increase in the time consumption of automatic tuning.To implement fast and accurate automatic tuning,we use deep learning technology to construct a Convolutional Neural Network(CNN)model for SpMV computing performance prediction,which is built based on dual-channel sparse matrix feature fusion,sparse matrix feature fusion and architecture feature fusion.In order to improve the prediction accuracy of SpMV computing performance,feature data is selected and constructed.The box plot is used to count SpMV time information.Then the Florida sparse matrix dataset is selected for experimental design and verification.Experimental results show that the model displaying a prediction accuracy of SpMV computing time over 80%and strong generalization ability.
作者 曹中潇 冯仰德 王珏 闵维潇 姚铁锤 高岳 王丽华 高付海 CAO Zhongxiao;FENG Yangde;WANG Jue;MIN Weixiao;YAO Tiechui;GAO Yue;WANG Lihua;GAO Fuhai(Computer Network Information Center,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China;School of Software,Beihang University,Beijing 100191,China;China Institute of Atomic Energy,Beijing 102413,China)
出处 《计算机工程》 CAS CSCD 北大核心 2022年第2期86-91,共6页 Computer Engineering
基金 国家重点研发计划(2017YFB0202302)。
关键词 稀疏矩阵向量乘 自动调优 深度学习 卷积神经网络 特征融合 Sparse Matrix Vector Multiplication(SpMV) automatic tuning deep learning Convolutional Neural Network(CNN) feature fusion
  • 相关文献

参考文献3

二级参考文献38

  • 1袁伟,张云泉,孙家昶,李玉成.国产万亿次机群系统NPB性能测试分析[J].计算机研究与发展,2005,42(6):1079-1084. 被引量:13
  • 2Vuduc Wilson.Automatic Performance of Sparse Matrix Kernels[D].Berkeley,CA:University of California,2003.
  • 3Im Eun Jin,Yelick Katherine.Optimizing sparse matrix computations for register reuse in SPARSITY[G] //LNCS 2073,Proc of the Int Conf on Computational Science.Berlin,Springer,2001,127-136.
  • 4Im Eun Jin,Yelick Katherine,Vudue Wilson.Sparsity,Optimization framework for fparse matrix kernels[J].International Journal of High Performance Computing Applications,2004,18(1):135-158.
  • 5Vuduc Wilson,Demmel James,Yelick Katherine,et al.Performance optimizarions and bounds for sparse matrixvector multiply[C] //Proc of Supercomputing.Los Alamitos,CA:IEEE Computer Society,2002= 1-35.
  • 6Vuduc Wilson,Demmel James,Bilmes Jeff.Statistical models for empirical search-based performance tuning[J].International Journal of High Performance Computing Applications,2004,18(1):65-94.
  • 7Demmel James,Yelick Katherine.Berkeley Benchmarking and OPtimization Project[OL].2006 [2007-11-20],http:// bebop.cs.berkeley.edu/.
  • 8Voduc Wilson,Demmel James,Yelick Katherine.OSKI,A library of automatically tuned sparse matrix kernels[C] //Proc of SciDAC 2005:Journal of Physics,Conference Series.Philadelphia,PA:IOP,2005:521-530.
  • 9Davis Tim.University of Florida sparse matrix collection[OL].2006[2007-11-20].http://www.else.ufl.edu/ research/sparse/matrices/.
  • 10张云泉.面向数值计算的并行计算模型DRAM(h.k)[C]//863计划智能计算机主题学术会议论文集:智能计算机研究进展.北京,清华大学出版社,2001:218-225.

共引文献33

同被引文献19

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部