期刊文献+

基于反馈机制的图像超分辨率重建算法 被引量:4

Super-Resolution Image Reconstruction Algorithm Based on Feedback Mechanism
下载PDF
导出
摘要 现有的图像超分辨率重建方法充分利用了强大的深度学习模型,但忽略了人类视觉系统中普遍存在的反馈机制。提出一种新型图像超分辨率重建算法,通过具有约束条件的递归神经网络中包含的隐藏状态实现反馈机制,旨在处理网络间的反馈连接并生成更具说服力的高级表示形式,提供更多的上下文信息,从而帮助低分辨率图像完成高分辨率图像的重建。此外,具有较强早期图像重建能力的反馈网络可逐步生成最终的高分辨率图像。为解决低分辨率图像因多种类型的退化而导致的细节损失问题,引入课程学习策略,使网络适用于更复杂的任务,提升模型的鲁棒性。实验结果表明,该算法能有效提升图像超分辨率重建的准确性,与SRCNN、VDSR、RDN等算法相比,其PSNR值最高提升了7.15 dB。 Although existing super-resolution image reconstruction methods make full use of high-performance deep learning models,they ignore the feedback mechanism that is ubiquitous in the human visual system.This paper proposes a super-resolution image reconstruction algorithm based on a feedback mechanism.The feedback mechanism is implemented by using the hidden states in a recurrent neural network with constraints.For the mechanism,a feedback module is designed to process the feedback connections between networks,and generate more a more persuasive highlevel representation that provides more contextual information,which helps high-resolution image reconstruction from low-resolution images.At the same time,a feedback network with a strong ability of early image reconstruction is built.It can gradually generate the final high-resolution image.Furthermore,to address the detail loss of low-resolution images caused by multiple types of degradation,a curriculum learning strategy is introduced to make the network applicable to more complex tasks and improve its robustness.The experimental results show that the proposed algorithm effectively improves the accuracy of super-resolution image reconstruction.Its PSNR value is increased by about 0.5 compared with SRCNN,VDSR,RDN and other algorithms.
作者 楼鑫杰 李小薪 刘志勇 LOU Xinjie;LI Xiaoxin;LIU Zhiyong(School of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China;Industry Center,Shenzhen Polytechnic,Shenzhen,Guangdong 518055,China)
出处 《计算机工程》 CAS CSCD 北大核心 2022年第2期261-267,共7页 Computer Engineering
基金 浙江省自然科学基金(LY18F020031)。
关键词 图像超分辨率重建 人类视觉系统 深度学习 反馈机制 课程学习策略 super-resolution image reconstruction human visual system deep learning feedback mechanism curriculum learning strategy
  • 相关文献

参考文献3

二级参考文献37

  • 1[15]Elad M, Feuer A. Restoration of a Single Superresolution Image from Se veral Blurred, Noisy and Undersampled Measured Images[J]. IEEE Trans. IP , 1997, 6(12): 1646-1658.
  • 2[1]Harris J L. Diffraction and Resolving Power[J]. J.O.S. A., 1964, 54(7): 931-936.
  • 3[2]Goodman J W. Introduction to Fourier Optics[M]. McGraw-Hill, New Yor k, 1968.
  • 4[3]Brown H A. Effect of Truncation on Image Enhancement by Prolate Spheroid al Function[J]. J.O.S.A., 1969, 59: 228-229.
  • 5[4]Jain A K. Fundamentals of Digital Image Processing[M]. Prentice-Hall , Englewood Cliffs, HJ, 1989.
  • 6[5]Wadaka S, Sato T. Superresolution in Incoherent Imaging System[J]. J.O.S.A., 1975, 65(3): 354-355.
  • 7[6]Andrews H C, Hunt B R. Digital Image Restoration[M]. Prentice-Hall, Englewood Cliffs, NJ, 1977.
  • 8[7]Hunt B R. Super-Resolution of Images: Algorithms, Principles, Performan ce[J]. International Journal of Imaging Systems and Technology, 1995, 6: 297-304.
  • 9[8]Rusforth C K. In Image Reconstruction, Theory and Application[M]. Ac ademic Press, New York, 1987.
  • 10[9]Richardson W H. Bayesian-Based Iterative Method of Image Restoration [J]. J.O.S.A., 1972, 62: 55-60.

共引文献288

同被引文献37

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部