期刊文献+

邻域与梯度显著特征融合的沥青路面裂缝检测方法 被引量:14

Asphalt Pavement Crack Detection Based on Fusion of Neighborhood and Gradient Salient Features
下载PDF
导出
摘要 针对沥青路面裂缝检测中富纹理噪声影响和细小裂缝误识别严重等问题,提出一种邻域与梯度显著特征融合的沥青路面裂缝检测方法.首先采用灰度校正和形态学重建降低外界干扰和富纹理中较亮点状噪声导致亮度不均的影响,根据像素及其邻域的显著差异提取邻域显著特征,通过方向可调滤波器得到不同方向上的梯度显著特征,将两者卷积融合并优选方向生成特征融合显著图;然后对特征融合显著图阈值分割得到疑似裂缝聚集区域,结合聚集区域的不同几何特征引入聚类分析法筛选裂缝候选区域;最后提出区域端点搜索与定位法,剔除无端点聚集区域的子集,并连接不同区域端点,最终实现裂缝较完整提取.在采集的沥青路面裂缝图像数据集上的实验结果表明,该方法的准确率、召回率、F值分别为92.857%, 86.405%和89.515%,可有效地检测沥青路面图像裂缝,尤其能识别细小裂缝,为路面养护工作提供更准确的裂缝信息. In order to solve the problem of the rich texture noise and serious misidentification of small cracks in the asphalt pavement crack detection,, an asphalt pavement crack detection method that combines neighborhood and gradient salient features is proposed. Firstly, the grayscale correction and morphological reconstruction are used to reduce the influence of external interference and uneven brightness caused by the bright spot noise in the rich texture, then the neighborhood salient features are extracted according to the salient differences between pixels and their neighborhood, and gradient salient features in different directions are obtained through the steerable filter. With the convolutional fusion of the neighborhood and gradient salient features, preferential directions are chosen to generate the salient map of feature fusion. Secondly, the suspected crack aggregation areas are obtained by the threshold segmentation of salient map. Based on the different geometric characteristics of the aggregation areas, a clustering analysis method is introduced to select the crack candidate area. Finally, the method of searching and locating a regional endpoint is proposed to eliminate the subsets without endpoint aggregation area, the endpoints of different regions are connected to achieve the complete crack extraction. The experimental results of the collected asphalt pavement crack image datasets show that the precision, recall and F-measure value are 92.857%, 86.405% and 89.515%, which can effectively detect cracks in asphalt pavement images, especially for small cracks, and provide more accurate crack information for pavement maintenance.
作者 胡成雪 何莉 陶健 王墨川 张德津 Hu Chengxue;He Li;Tao Jian;Wang Mochuan;Zhang Dejin(School of Electrical and Electronic Engineering,Hubei University of Technology,Wuhan 430068;School of Mechatronics and Control Engineering,Shenzhen University,Shenzhen 518060;Guangdong Key Laboratory for Urban Informatics,Shenzhen University,Shenzhen 518060)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第2期245-253,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家重点研发计划(2019YFB2102703) 广东省教育厅重点领域专项(2020ZDZX1052) 深圳市科创委面上项目(纵20200125) 深圳大学青年教师科研启动项目(QNJS0138).
关键词 沥青路面 裂缝检测 显著特征融合 裂缝区域筛选 区域端点搜索 asphalt pavement crack detection salient feature fusion crack region selecting regional endpoint search
  • 相关文献

参考文献11

二级参考文献129

共引文献310

同被引文献117

引证文献14

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部