期刊文献+

融合BERT与标签语义注意力的文本多标签分类方法 被引量:13

Text multi-label classification method incorporating BERT and label semantic attention
下载PDF
导出
摘要 多标签文本分类(MLTC)是自然语言处理(NLP)领域的重要子课题之一。针对多个标签之间存在复杂关联性的问题,提出了一种融合BERT与标签语义注意力的MLTC方法TLA-BERT。首先,通过对自编码预训练模型进行微调,从而学习输入文本的上下文向量表示;然后,使用长短期记忆(LSTM)神经网络将标签进行单独编码;最后,利用注意力机制显性突出文本对每个标签的贡献,以预测多标签序列。实验结果表明,与基于序列生成模型(SGM)算法相比,所提出的方法在AAPD与RCV1-v2公开数据集上,F1值分别提高了2.8个百分点与1.5个百分点。 Multi-Label Text Classification(MLTC)is one of the important subtasks in the field of Natural Language Processing(NLP).In order to solve the problem of complex correlation between multiple labels,an MLTC method TLA-BERT was proposed by incorporating Bidirectional Encoder Representations from Transformers(BERT)and label semantic attention.Firstly,the contextual vector representation of the input text was learned by fine-tuning the self-coding pre-training model.Secondly,the labels were encoded individually by using Long Short-Term Memory(LSTM)neural network.Finally,the contribution of text to each label was explicitly highlighted with the use of an attention mechanism in order to predict the multi-label sequences.Experimental results show that compared with Sequence Generation Model(SGM)algorithm,the proposed method improves the F value by 2.8 percentage points and 1.5 percentage points on the Arxiv Academic Paper Dataset(AAPD)and Reuters Corpus Volume I(RCV1)-v2 public dataset respectively.
作者 吕学强 彭郴 张乐 董志安 游新冬 LYU Xueqiang;PENG Chen;ZHANG Le;DONG Zhi’an;YOU Xindong(Beijing Key Laboratory of Internet Culture and Digital Dissemination Research(Beijing Information Science and Technology University),Beijing 100101,China)
出处 《计算机应用》 CSCD 北大核心 2022年第1期57-63,共7页 journal of Computer Applications
基金 北京市自然科学基金资助项目(4212020) 青海省藏文信息处理与机器翻译重点实验室/藏文信息处理教育部重点实验室开放课题基金资助项目(2019Z002)。
关键词 多标签分类 BERT 标签语义信息 双向长短期记忆神经网络 注意力机制 multi-label classification Bidirectional Encoder Representations from Transformers(BERT) label semantic information Bidirectional Long Short-Term Memory(BiLSTM)neural network attention mechanism
  • 相关文献

参考文献5

二级参考文献21

  • 1TSOUMAKAS G, KATAKIS I. Muhi-label classification: an over- view[ J]. Database Technologies Concepts Methodologies Tools and Applications, 2007,2007(3): 1 -13.
  • 2BOUTELL M R, LOU J, SHEN X, et al. Learning multi-label scene classification[ J]. Pattern Recognition, 2004, 37(9) : 1757 - 1771.
  • 3HUANG S-J, ZHOU Z-H. Multi-tabel teaming by exploiting label correlations locally[ C]// AAAI 2012: Proceedings of the 26th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2012:949 -955.
  • 4ZHANG M, ZHANG K. Multi-label learning by exploiting label de- pendency[ C]//KDD 2010: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2010:999 - 1008.
  • 5ZHANG M, ZHOU Z. Multi-label neural networks with applications to functional genomics and text categorization [ J]. IEEE Transac- tions on Knowledge and Data Engineering, 2006, 18(10) : 1338 -1351.
  • 6SCHAPIRE R E, SINGER Y. BoosTexter: a boosting-based system for text categorization[ J]. Machine Learning, 2000, 39(2/3) : 135 - 168.
  • 7ZHANG M-L, ZHOU Z-H. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7) :2038 - 2048.
  • 8TSOUMAKAS G, VLAHAVAS I. Random k-Labelsets: an ensem- ble method for multi-label classification [ C]// ECML 2007: Pro- ceedings of the 18th European Conference on Machine Learning, LNCS 4701, Berlin: Springer-Verlag, 2007:406 -417.
  • 9READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification[ C]//ECML PKDD 2009: Proceedings of the 2009 European Conference on Machine Learning and Knowl- edge Discovery in Databases, LNCS 5782. Berlin: Springer-Verlag, 2009:254-269.
  • 10GAO W, ZHOU Z. On the consistency of multi-label learning[ J]. Artificial Intelligence, 2013, 199(3) : 22 -44.

共引文献77

同被引文献114

引证文献13

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部