期刊文献+

基于卷积神经网络的细长路面病害检测方法 被引量:5

Elongated pavement distress detection method based on convolutional neural network
下载PDF
导出
摘要 针对细长路面病害人工检测耗时长和当前检测方法精度不足的问题,依据病害的弱语义特性和异常几何属性,提出了能够精准定位和分类出病害的二阶段细长路面病害检测方法Epd RCNN。首先,针对细长路面病害的弱语义特性,提出了一种复用低层特征并反复融合不同阶段特征的骨干网络;其次,在训练过程中,使用一种符合病害几何属性分布的锚框机制来生成高质量的正样本供网络训练;然后,在单一高分辨率特征图上预测病害包围框,并针对该特征图使用并行级联空洞卷积模块来提升其多尺度特征表达能力;最后,针对形状各异的候选区域,使用由可变形感兴趣区域池化(RoI Pooling)和空间注意力模块组成的候选区域特征改良模块来提取符合病害几何属性的候选区域特征。实验结果表明,所提方法在光照充足图像上的平均准确率均值(mAP)为0.907,在存在光照问题图像上的mAP为0.891,综合mAP为0.899,表明该方法具有良好的检测性能和对光照的鲁棒性。 Focusing on the problems of the large time consumption of manual detection and the insufficient precision of the current detection methods of elongated pavement distress,a two-stage elongated pavement distress detection method,named Epd RCNN(Elongated pavement distress Region-based Convolutional Neural Network),which could accurately locate and classify the distress was proposed according to the weak semantic characteristics and abnormal geometric properties of the distress.Firstly,for the weak semantic characteristics of elongated pavement distress,a backbone network that reused low-level features and repeatedly fused the features of different stages was proposed.Secondly,in the training process,the high-quality positive samples for network training were generated by the anchor box mechanism conforming to the geometric property distribution of the distress.Then,the distress bounding boxes were predicted on a single high-resolution feature map,and a parallel cascaded dilated convolution module was used to this feature map to improve its multi-scale feature representation ability.Finally,for different shapes of region proposals,the region proposal features conforming to the distress geometric properties were extracted by the proposal feature improvement module composed of deformable Region of Interest Pooling(RoI Pooling)and spatial attention module.Experimental results show that the proposed method has the mean Average Precision(mAP)of 0.907 on images with sufficient illumination,the mAP of 0.891 on images with illumination problems and the comprehensive mAP of 0.899,indicating that the proposed method has good detection performance and robustness to illumination.
作者 许慧青 陈斌 王敬飞 陈志毅 覃健 XU Huiqing;CHEN Bin;WANG Jingfei;CHEN Zhiyi;QIN Jian(Chengdu Institute of Computer Applications,Chinese Academy of Sciences,Chengdu Sichuan 610041,China;University of Chinese Academy of Sciences,Beijing 101408,China;Guangdong Hualu Transport Technology Company Limited,Guangzhou Guangdong 510420,China;Guangdong Jiaoke Testing Company Limited,Guangzhou Guangdong 510550,China;Guangzhou Electronic Technology Company Limited,Chinese Academy of Sciences,Guangzhou Guangdong 510070,China)
出处 《计算机应用》 CSCD 北大核心 2022年第1期265-272,共8页 journal of Computer Applications
关键词 细长路面病害 卷积神经网络 包围框 几何属性 并行级联空洞卷积 候选区域特征 空间注意力 elongated pavement distress Convolutional Neural Network(CNN) bounding box geometric property parallel cascaded dilated convolution region proposal feature spatial attention
  • 相关文献

参考文献2

二级参考文献8

  • 1Cheng H D,Miyojim M.Novel system for automatic pavement distress detection[J].Journal of Computer in Civil Engineering,1998(7):145~152.
  • 2Kelvin.Designs and implementation of automated systems for pavement surface distress survey[J].Journal of Infrastructure Systems,2000(3):24~32.
  • 3Kaseko Mohamed S,Ritchie,Stephen G.Pavement image processing using neural networks[A].Proceedings of the 2nd International Conference on Applications of Advanced Technologies in Transportation Engineering[C],1991:18~21.
  • 4Chou Ch P,Liau T.Development of automated algorithms for pavement condition survey[A],Transportation Research Record,1996:103~109.
  • 5Chou J,Cheng H D.Pavement distress classification using neural networks[A].Proceedings,IEEE International Conference on Systems,Man and Cybernetics[C],1994:397~401.
  • 6李清泉,邹勤,毛庆洲.基于最小代价路径搜索的路面裂缝检测[J].中国公路学报,2010,23(6):28-33. 被引量:37
  • 7沈照庆,彭余华,舒宁.一种基于SVM的路面影像损伤跨尺度识别方法[J].武汉大学学报(信息科学版),2013,38(8):993-997. 被引量:9
  • 8曹建农,张昆,元晨,许素素.用Mean Shift实现路面裂缝损伤自动识别与特征测量[J].计算机辅助设计与图形学学报,2014,26(9):1450-1459. 被引量:5

共引文献120

同被引文献44

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部