摘要
从线性变换的角度阐述了特征向量与特征值的几何意义.通过正交线性变换把长短轴不在坐标轴的椭圆变换为长短轴在坐标轴上,加深了学生对线性变换几何意义的理解.
The geometric meaning of eigenvector and eigenvalue is expounded from linear transformation.Then through orthogonal linear transformation,an ellipse whose long and short axes are not on the coordinate axis is transformed into the ellipse with long and short axes on the coordinate axis,which can deepen students′understanding of the geometric meaning of linear transformation.
作者
雍龙泉
李翠霞
吴世良
YONG Longquan;LI Cuixia;WU Shiliang(School of Mathematics and Computer Science,Shaanxi University of Technology,Hanzhong 723001,China;School of Mathematics,Yunnan Normal University,Kunming 650500,China)
出处
《高师理科学刊》
2022年第1期69-72,共4页
Journal of Science of Teachers'College and University
基金
陕西理工大学2020年大学生创新创业训练计划项目(S202010720091)
陕西理工大学教学改革研究项目(SLGYJG2015)。
关键词
线性变换
特征值
特征向量
几何意义
linear transformation
eigenvalue
eigenvector
geometric meaning