期刊文献+

A physical model study of surrounding rock failure near a fault under the influence of footwall coal mining 被引量:1

下载PDF
导出
摘要 A study of the deformation of the surrounding rock and coal pillars near a fault under the influence of mining is conducted on a physical model for the design of coal pillars to support and maintain the roofs of adjacent fault roadways.This research is based on the 15101 mining face in the Baiyangling Coal Mine,Shanxi,China,and uses simulation tests similar to digital speckle test technology to analyse the displacement,strain and vertical stress fields of surrounding rocks near faults to determine the influence of the coal pillar width.The results are as follows.The surrounding rock of the roadway roof fails to form a balance hinge for the massive rock mass.The vertical displacement,vertical strain and other deformation of the surrounding rock near the fault increase steeply as the coal pillar width decreases.The steep increase in deformation corresponds to a coal pillar width of 10 m.When the coal pillar width is 7.5 m,the pressure on the surrounding rock near the footwall of the fault suddenly increases,while the pressure on the hanging wall near the fault increases by only 0.35 MPa.The stress of the rock mass of the hanging wall is not completely shielded by the fault,and part of the load disturbance is still transmitted to the hanging wall via friction.The width of the fault coal pillars at the 15101 working face is determined to be 7.5 m,and the monitoring data verify the rationality of the fault coal pillars.
出处 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第4期626-640,共15页 国际煤炭科学技术学报(英文)
基金 The authors acknowledge the support of the China National Key R&D Program Project(2017YFC1503102) the National Natural Science Foundation of China(No.51704143) the Natural Science Foundation of Liaoning Province of China(2020-MS-302).
  • 相关文献

参考文献5

二级参考文献32

共引文献281

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部