期刊文献+

基于超宽选票的图像拼接方法

Image mosaic method for ultra-wide ballot
下载PDF
导出
摘要 针对机器视觉的电子选举系统中出现的超宽选票无法被现在主流的电子选举系统进行加载识别的问题,提出一种改进的图像拼接方法。首先,在特征提取部分简化了尺度不变特征变换(SIFT)算法中金字塔的层数以提升特征提取的效率;然后,在图像拼接阶段,先使用近邻(NN)算法进行特征粗匹配,再使用渐进一致采样(PROSAC)算法提高匹配精度,实现图像配准;最后,对重合区域使用渐入渐出融合法进行融合处理,实现了电子选票图像的拼接。由实验结果可以看出,该算法在保证了图像拼接质量的基础上,拼接平均耗时大概为30 ms,拼接效率高,满足了电子选举系统对超宽选票机器采集的需求。 Aiming at the problem that the ultra-wide ballots in the electronic voting system of machine vision can not be loaded and recognized by the current mainstream electronic voting systems,an improved image stitching method was proposed. Firstly,in the feature extraction part,the number of pyramid layers in the Scale-Invariant Feature Transform(SIFT)algorithm was simplified to improve the efficiency of feature extraction. Then,in the image stitching stage,the Nearest Neighbor(NN)algorithm was used for rough feature matching,and the PROgressive SAmple Consensus(PROSAC)algorithm was used to improve matching accuracy and realize image registration. Finally,the overlapped area was merged by using the gradual-in and gradual-out fusion method to achieve the splicing of electronic ballot images. From the experimental results,it shows that the average stitching time of the algorithm is about 30 ms while ensuring the quality of image stitching,which greatly improves the stitching efficiency and meets the needs of the electronic voting system for ultra-wide ballot machine collection.
作者 程政 官磊 周冲浩 CHENG Zheng;GUAN Lei;ZHOU Chonghao(Chengdu Institute of Computer Application,Chinese Academy of Sciences,Chengdu Sichuan 610041,China;School of Computer Science and Technology,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《计算机应用》 CSCD 北大核心 2021年第S02期254-257,共4页 journal of Computer Applications
关键词 电子选举 尺度不变特征变换 特征匹配 渐进一致采样 图像配准 electronic voting Scale-Invariant Feature Transform(SIFT) feature matching PROgressive SAmple Consensus(PROSAC) image registration
  • 相关文献

参考文献9

二级参考文献60

  • 1张香让,崔喆.击中/击不中变换在标准答题卡分割中的应用[J].计算机应用,2004,24(10):141-143. 被引量:6
  • 2李庆峰,付忠良,刘琴.一种高效的倾斜图像校正方法[J].计算机工程,2006,32(21):194-196. 被引量:14
  • 3David G Lowe. Distinctive Image Features from Scale-Invariant Keypoints [J]. International Journal of Computer Vision (S0920-5691), 2004, 60(2): 20.
  • 4Rahul Sukthankar, Yan Ke. PCA-SIFT: A More Distinctive Representation for Local Image Descriptors [C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattem Recognition. USA: 1EEE, 2004, 1063-6919/04(2004 IEEE): 8.
  • 5K Mikolajczyk, B Leibe, B Schiele. Local Features for Object Class Recognition [C]// Proc. IEEEE Int'l Conf. Computer Vision, 2005. USA: IEEE, 2005, vol.2: 1792-1799.
  • 6Babaud J, Witkin A P, Baudin Metal. Uniqueness of the Gaussian kernel for scale - space filtering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence: (S0162-8828), 1996, 8(1): 26-33.
  • 7T Lindeberg. Feature detection with automatic scale selection [J]. IJCV (S0920-5691), 1998, 30(2): 79-116.
  • 8Cordelia Schmid, Krystian Mikolajczyk. Scale & Affine Invariant Interest Point Detectors [J]. International Journal of Computer Vision (S0920-5691), 2004, 60(01): 24.
  • 9D G Lowe. Distinctive image features from scale invariant keypoints [ J]. International Journal of Computer Vision, 2004,60(2) : 91- 110.
  • 10Cordeliaschmid, Rogermohr. Loeal Gray value Invaiiants for Image Retrieval [ J ]. Pattern Analysis and Maehine Intelligenee, IEEE Transactions, VOlumel9, 15-sues May 1997. 530-535.

共引文献242

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部