期刊文献+

基于深度Q学习和可变形卷积U-Net的肝脏肿瘤分割方法

Liver tumor segmentation method based on deep Q learning and deformable convolution U-Net
下载PDF
导出
摘要 针对传统卷积神经网络U-Net对早期肝脏肿瘤的分割精度低的问题,在U-Net的基础上提出了基于深度Q学习和可变形卷积U-Net的肝脏肿瘤分割方法。首先使用深度Q学习对图像进行肿瘤目标定位,然后对目标肿瘤区域使用可变形卷积的U-Net进行分割,最后实现了粗剪裁到细分割的两段式学习框架。实验结果表明,利用该方法在肝脏肿瘤数据集上测试,其分割结果的Dice系数能够达到68%,较传统的卷积神经网络U-Net精度提升了6.89个百分点。 Aiming at the problem of low segmentation accuracy of the traditional convolutional neural network U-Net for early liver tumors,based on U-Net,a liver tumor segmentation method based on deep Q learning and deformable convolutional U-Net was proposed. Firstly,deep Q learning was used to locate the tumor target in the image. Secondly,the target tumor region was segmented using a deformable convolution U-Net. Finally,a two-stage learning framework from rough cutting to fine segmentation was realized. Experimental results show that by using this method to test on the liver tumor dataset,the DSC(Dice Similarity Coefficient)of the segmentation result can reach 68%,which is 6. 89 percentage points higher than that of U-Net.
作者 康天赐 姚宇 萧力芮 KANG Tianci;YAO Yu;XIAO Lirui(Chengdu Institute of Computer Applications,Chinese Academy of Sciences,Chengdu Sichuan 610041,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《计算机应用》 CSCD 北大核心 2021年第S02期362-366,共5页 journal of Computer Applications
关键词 强化学习 深度学习 可变形卷积 图像分割 肝脏肿瘤 reinforcement learning deep learning deformable convolution image segmentation liver tumor
  • 相关文献

参考文献1

共引文献379

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部