期刊文献+

室内可见光定位算法研究 被引量:1

Research on Indoor Visible Light Localization Algorithm
下载PDF
导出
摘要 针对室内场所定位精度低的问题,提出一种基于改进粒子群算法的RSSI(Received Signal Strength Indication:接收信号强度指示)可见光定位方法.采用莱维飞行算法对粒子群算法进行改进,解决了标准粒子群算法易陷入局部最优的问题,提高了算法的收敛速度和定位精度.在5 m×5 m×3 m的室内环境下,经过仿真测试,改进后的粒子群算法结合RSSI定位方法定位精度可以达到0.038241 m,算法稳定度上升,定位精度更高,更适合在室内定位中使用. Aiming at the problem of low positioning accuracy in indoor places,this paper proposes a RSSI(Received Signal Strength Indication)visible light positioning method based on improved particle swarm optimization algorithm.The Lévy flight algorithm is used to improve the particle swarm optimization algorithm,which solves the problem that the standard particle swarm optimization algorithm is easy to fall into the local optimum,and improves the convergence speed and positioning accuracy of the algorithm.In the indoor environment of 5 m×5 m×3 m,after simulation test,the improved particle swarm optimization algorithm combined with RSSI positioning method can reach a positioning accuracy of 0.038241 m,the algorithm stability is improved,the positioning accuracy is higher,and it is more suitable for indoor positioning.
作者 任永旺 赵钢 张慧颖 REN Yongwang;ZHAO Gang;ZHANG Huiying(School of Information and Control Engineering,Jilin Institute of Chemical Technology,Jilin 132022,China;Government and Enterprise Department,Jilin Wangyuan Communication Co.,Ltd,Changchun 130015,China)
出处 《吉林化工学院学报》 CAS 2022年第1期63-67,共5页 Journal of Jilin Institute of Chemical Technology
基金 吉林化工学院科研项目(2021050) 吉林省大学生创新创业训练计划项目(202010192087).
关键词 可见光定位 接收信号强度 粒子群算法 莱维飞行 visible light localization receiving signal strength indication particle swarm optimization lévy flight
  • 相关文献

参考文献5

二级参考文献32

  • 1李栋,曹义华,冯婷.基于地形特征的简易地形模拟算法[J].航空计算技术,2005,35(2):32-35. 被引量:8
  • 2徐凤燕,石鹏,王宗欣.基于参数拟合的距离—损耗模型室内定位算法[J].电路与系统学报,2007,12(1):1-5. 被引量:10
  • 3Jin Guang - yao, Lu Xiao - yi. An Indoor - Locali - zation Mechanism Using Active RFID Tag[ C]. Proceedings of the IEEE International Confe - rence on Sensor Networks, Ubiquitous, and Trustworthy Computing. Seoul, Korea, 2006.
  • 4孙瑜.射频识别(RFID)室内定位算法研究[D].西南交通大学,2002.
  • 5Bao Xu, Wang Gang. Random Sampling Algo - rithm in RFID Indoor Location System[ C]. Proceedings of the Third IEEE International Workshop on Electronic Design, Test and Applications, Zhenjiang, Jiangsu Province, China, 2005.
  • 6Yimin Zhang and Moeness GAmin. Locali - zation and Tracking of Passive RFID Tags [ C ]. Wireless Sensing and Processing, 2006,9(1):1 -11.
  • 7RICARDO DE A L RABILO, MARCUS V LEMOS, DANIEL BARBOSA. Power System Harmonics Estimation using Particle Swarm Optimization[ C ]//IEEE World Congress on Computational Intelligence. Brisbane, Australia,2012 : 10-15.
  • 8CLAUDIO FABIANO, MOTYA TOLEDO, LUCAS DE OLIVEIRA, et al. A genetic algorithm/mathematical programming ap- proach to solve a two-level soft drink production problem[ J]. Computers & Operations Research,2014,48 (2) :40-52.
  • 9ZAHRA BEHESHTI, SITI MARIYAM SHAMSUDDIN, SITI SOPHIAYATI YUHANIZ. Binary Accelerated Particle Swarm Algo- rithm (BAPSA) for discrete optimization problems [ J ]. Journal of Global Optimization,2013,57 (2) : 549 -573.
  • 10GIFTSON SAMUEL G, CHRISTOBER ASIR RAJAN C. Hybrid: Particle Swarm Optimization-Genetic Algorithm and Particle Swarm Optimization-Shuffled Frog Leaping Algorithm for Long-term Generator Maintenance Scheduling[ J ]. International Journal of Electrical Power and Energy Systems,2015,65(3) :432 -444.

共引文献58

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部