期刊文献+

协同过滤推荐算法在视频缓存策略中的应用

Application of collaborative filtering recommendation algorithm in video caching strategy
下载PDF
导出
摘要 缓存替换策略是内容分发网络(Content Delivery Network,CDN)研究中的重要内容。常用的缓存方案是根据内容本身的特征进行缓存,比如视频的流行度、评分质量等。文章在缓存策略的设计中考虑到了用户特征,即根据用户的喜好,选择需要缓存的内容。使用基于矩阵分解的推荐算法对用户需求进行分析,筛选出用户可能感兴趣的视频,并利用基于加权评分预测值的贪婪缓存算法选择合适的内容进行缓存。仿真实验的结果表明,该算法可以将缓存命中率提高5-10%。 The cache replacement strategy is an important content in the research of content delivery network(CDN).The caching scheme commonly used is to cache according to the characteristics of the content itself,such as the popularity of the video,the quality of the rating,and so on.This paper takes into account the characteristics of users in the design of the caching strategy,that is,select the content that needs to be cached according to the user's preferences.A recommendation algorithm based on matrix factorization is used to analyze users'needs,and screen out the videos that users may be interested in,and use a greedy caching algorithm based on weighted score predictions to select appropriate video content for caching.The results of simulation experiments show that the algorithm can increase the cache hit rate by 5-10%.
作者 彭冬阳 王睿 胡谷雨 Peng Dongyang;Wang Rui;Hu Guyu(Command and Control Engineering College,Army Engineering University of PLA,Nanjing,Jiangsu 210007,China)
出处 《计算机时代》 2022年第2期12-15,共4页 Computer Era
关键词 CDN 缓存策略 推荐算法 矩阵分解 CDN caching strategy recommendation algorithm matrix factorization
  • 相关文献

参考文献5

二级参考文献110

  • 1杨戈,廖建新,朱晓民,杨波,黄海.基于段流行度的移动流媒体代理服务器缓存算法[J].通信学报,2007,28(2):33-39. 被引量:8
  • 2李子木 吴建平 李星.CERNET高性能网络信息服务体系结构的研究[A]..见:CERNET 2000学术年会论文集[C].上海,2000.841~846.
  • 3李子木 吴建平 李星.Internet高速内容分发网络技术的研究:技术报告[R].清华大学,2000-12..
  • 4Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 6Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 7Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 8Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 9Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 10Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.

共引文献778

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部