期刊文献+

基于共享最近邻的客户交易数据聚类算法

A Customer Transaction Data Clustering Algorithm Based on Shared Nearest Neighbors
下载PDF
导出
摘要 利用客户交易数据聚类分析,可得到更优异的客户细分效果,有助于企业更详实地了解消费者,制定精准的营销策略。PurTreeClust是一种新型的客户交易数据聚类算法,定义了一种新型的度量方式PurTree距离,可以很好地分析处理具有层次树结构的交易数据,但未考虑近邻点的影响,仅将交易树分配到距离最近的聚类中心所属类簇,容易出现错误的交易树分配。该文利用交易树之间的共享最近邻信息,提出一种客户交易数据聚类算法。该算法在聚类分配时,充分利用共享最近邻,首先分配类簇的从属交易树,然后分配类簇的可能从属交易树,实现聚类分配,可发现更加紧凑清晰的类簇,并避免了交易树错误分配,改善了客户细分效果。最后采用6个真实客户交易数据集进行实验,验证了该算法的有效性。 By clustering analysis of customer transaction data,better customer segmentation effect can be obtained,which is helpful for enterprises to have a more detailed understanding of consumers and develop accurate marketing strategies.As a new clustering algorithm for customer transaction data,PurTreeClust defines a new measurement method,PurTree distance,which can analyze and process transaction data with hierarchical tree structure.However,without considering the influence of neighboring points,only the purchase tree is allocated to the class cluster belonging to the nearest cluster center,so the wrong purchase tree allocation is prone to occur.We propose a clustering algorithm for customer transaction data using the shared nearest neighbors information among purchase trees.The algorithm makes full use of the shared nearest neighbors to achieve cluster allocation.Firstly,the subordinate purchase tree of the cluster is allocated,and then the possible subordinate purchase tree of the cluster is allocated to realize cluster allocation.It can find more compact and clear clusters,avoid the wrong allocation of the purchase tree,and improve the effect of customer segmentation.Finally,experiments on six real customer transaction datasets verify that the proposed algorithm is more effective.
作者 李遥 荀亚玲 LI Yao;XUN Ya-ling(School of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《计算机技术与发展》 2022年第1期73-78,共6页 Computer Technology and Development
基金 国家青年科学基金项目(61602335) 山西省自然科学基金(201901D211302) 太原科技大学博士科研启动基金项目(20172017)。
关键词 聚类 交易数据 客户细分 交易树 共享最近邻 clustering transaction data customer segmentation purchase tree shared nearest neighbor
  • 相关文献

参考文献5

二级参考文献37

  • 1陈明亮,李怀祖.客户价值细分与保持策略研究[J].成组技术与生产现代化,2001,18(4):23-27. 被引量:70
  • 2宋明,刘宗田.基于数据交叠分区的并行DBSCAN算法[J].计算机应用研究,2004,21(7):17-20. 被引量:9
  • 3闫相斌,李一军,叶强.基于购买行为的客户分类方法研究[J].计算机集成制造系统,2005,11(12):1769-1774. 被引量:11
  • 4李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 5Kuo R.J., Ho L.M., Hu C.M. Integration of Self-organizing Feature Map and K-means Algorithm for Market Segmentation [J]. Computers and Operations Research,2002,29(11):1475-1493.
  • 6D T Pham,S S Dimov,C D Nguyen. Selection of K in K-means clustering[J]. Mechanical Engineering Science,2004,219(C):103~119.
  • 7Soper,Suzanne,the evolution of segmentation methods in services:where next ?[J].Journal of Financial Services Marketing,2002,8:68 ~ 69.
  • 8Lazer,William,Life style concept and marketing,toward scientific marketing[M].Stephen Greyser,ed,Chicago:American Marketing Assn.,1963:130.
  • 9Wells,William,Tigert,Doug,Activities,interests,and opinion[J].Journal of Advertising Research,August,1971,11:27 ~ 35.
  • 10Plummer,Joseph T.,The concept and application of life style segmentation[J].Journal of Marketing,Jan 1974,38 (1):34.

共引文献1202

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部