期刊文献+

P掺杂6H-SiC的第一性原理研究 被引量:1

First-Principles Study of P-Doped 6H-SiC
下载PDF
导出
摘要 采用基于密度泛函理论的第一性原理赝势平面波法,计算未掺杂与P替换Si、C以及P间隙掺杂6H-SiC的电子结构与光学性质。结果显示未掺杂的6H-SiC是带隙为2.052 eV的间接带隙半导体,P替换Si、C掺杂以及P间隙掺杂6H-SiC带隙均减小,分别为1.787 eV、1.446 eV和0.075 eV,其中P间隙掺杂带隙减小幅度最大。P替换掺杂6H-SiC使得费米能级向导带移动并插入导带中,呈n型半导体。P间隙掺杂价带中的一条能级跨入费米能级,因此在禁带中出现一条P 3p杂质能级,P间隙掺杂6H-SiC转为p型半导体。替换与间隙掺杂使得6H-SiC的介电函数实部增大,介电函数虚部、吸收光谱、反射光谱与光电导率红移,其中P间隙掺杂效果最佳。通过P掺杂材料的电导率增强,对红外波段的利用率明显提高,为6H-SiC在红外光电性能方面的应用提供有效的理论依据。 The electronic structure and optical properties of intrinsic 6 H-SiC,P substituted for Si,C doped and P interstitial doped 6 H-SiC were calculated by the first-principles pseudopotential plane wave method based on density functional theory.The results indicate that intrinsic 6 H-SiC is an indirect band gap semiconductor with a band gap of 2.052 eV.The band gaps of the P substituted for Si,C doped and P interstitial doped 6 H-SiC decrease to 1.787 eV,1.446 eV and 0.075 eV,respectively.The interstitial doping band gap decreases the most.P substitutional doped 6 H-SiC causes the Fermi level guide band to move and insert into the conduction band,and the 6 H-SiC becomes an n-type semiconductor.One level of P interstitial doping valence band crosses into Fermi level,so a P 3 p impurity level appears in the gap band,and 6 H-SiC turns into p-type semiconductor.Substitutional and interstitial doping increase the real part of dielectric function of 6 H-SiC,while the imaginary part of dielectric function,absorption spectrum,reflection spectrum and photoconductivity redshift.Among them,P interstitial doped 6 H-SiC has the best effect.The conductivity of the material is enhanced and the utilization rate of the material in the infrared band is obviously improved by P doping.The results provide effective theoretical basis for the application of 6 H-SiC in infrared photoelectric performance.
作者 黄思丽 谢泉 张琴 HUANG Sili;XIE Quan;ZHANG Qin(Institute of Advanced Optoelectronic Materials and Technology,College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
出处 《人工晶体学报》 CAS 北大核心 2022年第1期49-55,64,共8页 Journal of Synthetic Crystals
基金 贵州大学智能制造产教融合创新平台及研究生联合培养基地(2020-520000-83-01-324061) 国家自然科学基金(61264004) 贵州省高层次创新型人才培养项目(黔科合人才(2015)4015)。
关键词 间隙掺杂 6H-SIC 带隙 介电函数 第一原理 电子结构 光学性质 gap doping 6H-SiC band gap dielectric function first-principle electronic structure optical property
  • 相关文献

参考文献11

二级参考文献71

  • 1宋生,胡小波,徐现刚.半绝缘SiC单晶生长和表征[J].人工晶体学报,2012,41(S1):166-169. 被引量:4
  • 2彭同华,刘春俊,王波,王锡铭,郭钰,赵宁,李龙远,刘宇,黄青松,贾玉萍,王刚,郭丽伟,陈小龙.宽禁带半导体碳化硅单晶生长和物性研究进展[J].人工晶体学报,2012,41(S1):234-241. 被引量:14
  • 3刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,2011.
  • 4Bhatnagar M, Baliga B J. Comparison of 6H-SiC, 3C-SiC, anti Si for Power Devices[ J]. Electron Devices, IEEE Transactions on, 1993,40(3 ) : 645-655.
  • 5Hobgood H M D, Glass R C, Augustine G, et al. Semi-insulating 6H-SiC Grown by Physical Vapor Transport[ J]. Applied Physics Letters, 1995,66(11):1364-1366.
  • 6Son N T, Carlsson P, Gallstrfim A, et al. Prominent Defects in Semi-insulating SiC Substrates[J]. Physica B: Condensed Matter,2007,401:67- 72.
  • 7Sghaier N, Bluet J M, Souifi A, et al. Study of Trapping Phenomenon in 4H-SiC MESFETs: Dependence on Substrate Purity [ J ]. Electron Devices, IEEE Transactions on,2003,50(2) :297-302.
  • 8Maier K, MUller H D, Schneider J. Transition Metals in Silicon Carbide (SiC) : Vanadium and Titanium [ C ]. Materials Science Forum, 1992, 83:1183-1194.
  • 9Garces N Y, Glaser E R, Carlos W E, et al. Behavior of Defects in Semi-insulating 4H-SiC after Ultra-high Temperature Anneal Treatments [ J ]. Physica B: Condensed Matter,2007,401:77-80.
  • 10Kimotn T, Nishino H, Ueda T, et al. Photoluminescence of Ti Doped 6H-SiC Grown by Vapor Phase Epitaxy[ J]. Japanese Journal of Applied Physics,1991,30(2B) :L289-L291.

共引文献18

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部