期刊文献+

椭圆曲线y^(2)=(x-6)(x^(2)+6x+r)的正整数点 被引量:3

The Positive Integral Points on the Elliptic Curve y^(2)=(x-6)(x^(2)+6x+r)
原文传递
导出
摘要 利用同余式、Legendre符号、Pell方程的解的性质等初等方法证明了r=36t^(2)-69,t∈Z^(+),2■t,而12t^(2)+1,6t^(2)-13均为素数时椭圆曲线y^(2)=(x-6)(x^(2)+6x+r)无正整数点。 Let r=36t^(2)-69,where t is a positive odd number satisfying that 12t^(2)+1 and 6t^(2)-13 are primes.The elliptic curve in title has no positive integer points were proved with the help of congruence,Legendre symbol and some properties of the solutions to Pell equation.
作者 杜先存 万飞 杨慧章 DU Xiancun;WAN Fei;YANG Huizhang(College of Teachers Education,Honghe University,Mengzi 661199,China;College of Mathematics,Honghe University,Mengzi 661199,China)
出处 《内蒙古农业大学学报(自然科学版)》 CAS 2021年第6期99-103,共5页 Journal of Inner Mongolia Agricultural University(Natural Science Edition)
基金 云南省应用基础研究计划项目——地方高校联合专项面上项目(2018FH001-014) 云南省教育厅科学研究基金项目(2019J1182) 红河学院中青年学术骨干培养资助项目(2015GG0207)。
关键词 椭圆曲线 正整数点 同余 LEGENDRE符号 PELL方程 Elliptic curve positive integer point congruence Legendre symbol Pell equation
  • 相关文献

参考文献7

二级参考文献41

  • 1邱德荣,张贤科.Mordell-Weil groups and Selmer groups of twin-prime elliptic curves[J].Science China Mathematics,2002,45(11):1372-1380. 被引量:11
  • 2潘家宇.关于丢番图方程x^2-Dy^4=1的一些注记[J].河南科学,1997,15(1):18-22. 被引量:9
  • 3Baker A.Linear forms in the logarithms of algebraic number Ⅰ.Mathematika,1966.13:204-216; Ⅱ ibid,1967,14:102-107:Ⅲ ibid,1967.14:220-228; Ⅳ ibid; 1968,15:204-216.
  • 4Stroeker R J,Tzanakis N.Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms.Acta Arith,1994,29(2):177-196.
  • 5Stroeker R J,Tzanakis N.On the elliptic logarithm method for elliptic diophantine equations:reflections and an improvement.Experimental Mathemetics,1999,8(2):135-149.
  • 6Stroeker R J,Tzanakis N.Computing all integer solutions of a genus 1 equation.Math Comp.,2003,72:1917-1933.
  • 7Bremner A,Tzanakis N.Integral points on y2=x3-7x+10.Math Comp.,1983,41(164):731-741.
  • 8Zhu Hui Lin,Chen Jian Hun.Integral point on a class of elliptic curve.Wuhan University-Journal of Natural Sciences,2006,11(3):477-480.
  • 9Zhu Hui Lin,Chen Jian Hua.Integral point on certain elliptic curve.Padova:Rend.Sem.Mat.Univ.,2008,119:1-20.
  • 10Zagier D.Large integral point on elliptic curves.Math Comp.,1987,48(177):425-536.

共引文献53

同被引文献25

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部