期刊文献+

关于随机微分方程Girsanov变换的路径独立性

On path independence of Girsanov transformation for stochastic differential equations
原文传递
导出
摘要 本文介绍了近十年来关于随机微分方程Girsanov变换的路径独立性的主要研究成果.该性质因反映了金融数学中市场的有效性而具有明确的应用背景,也因等价于一些非线性偏微分方程而具有数学研究价值.本文分别就经典的随机微分方程、带跳的随机微分方程、随机偏微分方程和分布依赖随机微分方程,介绍Girsanov变换的路径独立性所联系的非线性偏微分方程,并对其他相关研究加以评注.最后,作为一个新结果,本文使用非线性偏微分方程刻画了随机微分方程解的路径无关性. In this paper,we introduce results obtained over the past ten years on the path-independence of the Girsanov transformation for stochastic differential equations,which was originated in 1990s from an important market efficiency property in mathematical finance studies.We end up the paper with a new result characterizing the solution of stochastic differential equations using nonlinear partial differential equations.
作者 王凤雨 吴奖伦 Fengyu Wang;Jianglun Wu
出处 《中国科学:数学》 CSCD 北大核心 2021年第11期1861-1876,共16页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11771326,11831014和11921001)资助项目。
关键词 随机微分方程 Girsanov 变换 路径独立性 非线性偏微分方程 stochastic differential equation Girsanov transformation path-independence nonlinear parabolic equation
  • 相关文献

参考文献4

二级参考文献20

  • 1BUCKDAHN Rainer.Inf-convolution of G-expectations[J].Science China Mathematics,2010,53(8):1957-1970. 被引量:1
  • 2Arnaudon M, Abdoulaye K, Thalmaier A. Brownian motion with respect to a metric depenctlng on time: aennltlOn existence and applications to Ricei flow. C R Acad Sci Paris Ser, 2008, 346:773-778.
  • 3Black F, Scholes M. The pricing of options and corporate liabilities. J Political Economy, 1973, 81:637-654.
  • 4Elworthy K D. Stochastic Differential Equations on Manifolds. London Mathematical Society Lecture Note Series, 70 Cambridge: Cambridge University Press, 1982.
  • 5Elworthy K D. Geometric aspects of diffusions on manifolds. Ecole d'Et Probabilit de Saint-Flour-XV-XVII 1987. Lect Notes Math, 1989, 1362:276-425.
  • 6Gikhman I I, Skorohod A V. Stochastic Differential Equations. Grundlehren der mathematischen Wissenschaften, 218. Berlin: Springer, 1972.
  • 7Hodges S, Carverhill A. Quasi mean reversion in an efficient stock market: the characterisation of Economic equilibria which support Black-Scholes option pricing. Economic J, 1993, 103:395-405.
  • 8Hodges S, Liao C H. Equilibrium price processes mean reversion and consumption smoothing. Working paper, the University of Warwick, 2004.
  • 9Ikeda N, Watanabe S. Stochastic Differential Equations and Diffusion Processes. Amsterdam-Tokyo: North-Holland and Kodansha Ltd., 1989.
  • 10It5 K. On Stochastic Differential Equations. Mem Amer Math Soc, vol. 4. Providence, RI: Amer Math Soc, 1951.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部