期刊文献+

数学审题:审什么?怎样审? 被引量:2

原文传递
导出
摘要 数学审题是"观"与"察"的结合,是发现、提取、挖掘问题所蕴含的信息,为制定解题方案做好准备.审题不仅要搞清楚显性的条件与目标,还应搞清楚隐性的问题本质、隐含信息、关键点、联结点、困难点等.审题应围绕问题的目标,用结构的眼光考察条件与结构的联系和差异;应借助联想、猜想,让静态的信息活起来、动起来.审题的主体是学生,教师的职责是指导学生审题.
作者 李昌官
出处 《数学通讯》 2021年第24期8-11,共4页
  • 相关文献

参考文献2

二级参考文献15

  • 1王业坤.值得商榷的一道高考选择题[J].上海中学数学,2007(9). 被引量:1
  • 2R R Skemp. The Psychology of Learning Mathematics[C]. Middlesex, England: Penguin Books, 1986.
  • 3M K Stein, S Lane. Instructional Tasks and the Development of Student Capacity to Think and Reason:An Analysis of the Relationship between Teaching and Learning in a Reform Mathematics Project [J].Educational Research and Evaluation, 1996, (2).
  • 4S Blessing, B Ross. Content Effects in Problem Categorization and Problem Solving [J]. Journal of Experimental Psychology : Learning, Memory,and Cognition, 1996, (22).
  • 5W Doyle. Work in Mathematics Classes. The Context of Students' Thinking during Instruction [J].Educational Psychologist, 1988, (23).
  • 6P Halmos. The Heart of Mathematics [J]. American Mathematical Monthly, 1980, (87).
  • 7L R Novick, K J Holyoak. Mathematical Problem Solving by Analogy [J]. Journal of Experimental Psychology : Learning, Memory, and Cognition, 1991.
  • 8A Sfard. On the Dual Nature of Mathematics Conception: Reflections on Processes and Objects as Different Sides of the Same Coin [J]. Educational Studies in Mathematics, 1991, (1).
  • 9M K Stein, M S Smith. Mathematical Tasks as A Framework for Reflection:From Research to Practice[J]. Mathematics Teaching in the Middle School,1998, (3).
  • 10Sun Xu Hua, Wong Ngai Ying, Lam Chi Chung.Bianshi Problem as the Bridge from "Entering the Way" to "Transcending the Way": The Cultural Characteristic of Bianshi Problem in Chinese Math Education [J]. Journal of the Korea Society of Mathematical Education Series D: Research in Mathematical Education, 2005, (2).

共引文献41

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部