摘要
以2000—2010年的中国345个地市为研究样本,分析人口老龄化的4个直接影响因素,即人口自然老化、出生、死亡和迁移。利用人口统计方法计算4个直接因素对各地市人口老龄化的改变值、改变率,检验了计算精度,通过人口自然老化、死亡和出生计算出的2010年老龄化率与“六普”真实值仅相差0.01%。结果显示:人口自然老化和死亡是人口老龄化的主导因素,贡献值为70.7%,这两个因素与寿命水平密切相关,西部地区人口自然老化作用显著提高了老龄化程度,死亡作用又显著降低了老龄化程度,而东部地区则更稳定。出生对短期老龄化的降低作用较低,贡献值为27.6%,对老龄化的降低呈现聚集特征和明显的“四角分布”格局。迁移对老龄化的作用则表现出省会城市的“异常值”现象,发达地区主要依赖人口迁入降低老龄化程度。
There are many factors affecting population aging,but only four factors are directly affecting population aging,i.e.natural aging,birth,death and migration.Firstly,the relationship between four direct factors and aging was analyzed.The period 2000—2010 and 345 prefecture level and above administrative regions in China were chosen as samples,the effect of four direct factors on population aging in different prefectures are calculated by demographic statistics.The accuracy of the calculation were tested.The aging rate calculated by natural aging,death and birth in 2010 is only 0.01%different from the true value of the Sixth Census.The results show that natural aging and death are the dominant factor of population aging,the contribution is 70.7%,these two factors are closely related to life expectancy level,aging rate in the western region is significantly increased by natural aging,and significantly reduced by death,while the eastern region is more stable.Birth has a relatively low effect on the decline of aging during short period,the contribution is 27.6%,and is characterized by obvious“quadrangular distribution”pattern.The effect of migration on aging shows the phenomenon of“abnormal value”in provincial capitals.Developed areas mainly rely on population migration to reduce the degree of aging.
作者
黄翌
卢显晶
刘潇潇
施沪静
HUANG Yi;LU Xianjing;LIU Xiaoxiao;SHI Hujing(School of Geographic Sciences, Nantong University, Nantong 226007, China)
出处
《地域研究与开发》
CSSCI
CSCD
北大核心
2022年第1期156-161,共6页
Areal Research and Development
基金
江苏省自然科学基金项目(BK20150405)
江苏省大学生创新训练计划项目(202110304111Y)。
关键词
老龄化
五普
六普
出生
迁移
死亡
直接因素
aging
fifth population census
sixth population census
birth
migration
death
direct influencing factors